Optimal embeddings of generalized Besov spaces
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 5-31
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove optimal embeddings of generalized Besov spaces built-up over rearrangement invariant function spaces defined on $\mathbb R^n$ with the Lebesgue measure into other rearrangement invariant spaces in the subcritical or critical cases and into generalized Hölder–Zygmund spaces in the supercritical case. The investigation is based on some real interpolation techniques and estimates of the rearrangement of $f$ in terms of the modulus of continuity of $f$.
@article{EMJ_2011_2_1_a0,
author = {Z. Bashir and G. E. Karadzhov},
title = {Optimal embeddings of generalized {Besov} spaces},
journal = {Eurasian mathematical journal},
pages = {5--31},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a0/}
}
Z. Bashir; G. E. Karadzhov. Optimal embeddings of generalized Besov spaces. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 5-31. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a0/