Optimal embeddings of generalized Besov spaces
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 5-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove optimal embeddings of generalized Besov spaces built-up over rearrangement invariant function spaces defined on $\mathbb R^n$ with the Lebesgue measure into other rearrangement invariant spaces in the subcritical or critical cases and into generalized Hölder–Zygmund spaces in the supercritical case. The investigation is based on some real interpolation techniques and estimates of the rearrangement of $f$ in terms of the modulus of continuity of $f$.
@article{EMJ_2011_2_1_a0,
     author = {Z. Bashir and G. E. Karadzhov},
     title = {Optimal embeddings of generalized {Besov} spaces},
     journal = {Eurasian mathematical journal},
     pages = {5--31},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a0/}
}
TY  - JOUR
AU  - Z. Bashir
AU  - G. E. Karadzhov
TI  - Optimal embeddings of generalized Besov spaces
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 5
EP  - 31
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a0/
LA  - en
ID  - EMJ_2011_2_1_a0
ER  - 
%0 Journal Article
%A Z. Bashir
%A G. E. Karadzhov
%T Optimal embeddings of generalized Besov spaces
%J Eurasian mathematical journal
%D 2011
%P 5-31
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a0/
%G en
%F EMJ_2011_2_1_a0
Z. Bashir; G. E. Karadzhov. Optimal embeddings of generalized Besov spaces. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 5-31. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a0/

[1] I. Ahmed, G. E. Karadzhov, “Optimal embeddings of generalized homogeneous Sobolev spaces”, C. r. de l'Acad. Bulgare des Sci., 61 (2008), 967–972 | MR | Zbl

[2] Z. Bashir, G. E. Karadzhov, “Optimal embeddings of generalized Besov spaces”, C. r. de l'Acad. Bulgare des Sci., 63 (2010), 799–806 | MR | Zbl

[3] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, New York, 1988 | MR | Zbl

[4] J. Berg, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, New York, 1976 | MR

[5] Ju. A. Brudnyi, N. Ja. Krugliak, Interpolation spaces and interpolation functors, North-Holland, Amsterdam, 1991 | Zbl

[6] A. Cianchi, “Symmetrization and second order Sobolev inequalities”, Annali di Matem., 183 (2004), 45–77 | DOI | MR | Zbl

[7] M. Cwikel, E. Pustilnik, “Sobolev type embeddings in the limiting case”, J. Fourier Anal. Appl., 4 (1998), 433–446 | DOI | MR | Zbl

[8] M. Cwikel, E. Pustilnik, “Weak type interpolation near “endpoint” spaces”, J. Funct. Anal., 171 (2000), 235–277 | DOI | MR | Zbl

[9] D. E. Edmunds, R. Kerman, L. Pick, “Optimal Sobolev embeddings involving rearrangement invariant quasinorms”, J. Funct. Anal., 170 (2000), 307–355 | DOI | MR | Zbl

[10] D. E. Edmunds, H. Triebel, “Sharp Sobolev embeddings and related Hardy inequalities: the critical case”, Math. Nachr., 207 (1999), 79–92 | MR | Zbl

[11] A. Gogatishvili, J. S. Neves, B. Opic, Optimal embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving $k$-modulus of smoothness, preprint, 2008 | MR

[12] A. Gogatishvili, V. I. Ovchinnikov, “Interpolation orbits and optimal Sobolev's embeddings”, J. Funct. Anal., 253 (2007), 1–17 | DOI | MR | Zbl

[13] A. Gogatishvili, V. I. Ovchinnikov, The optimal embedding for the Calderon type spaces and the $J$-method spaces, preprint, 2008

[14] M. L. Goldman, “On embedding for different metrics of Calderon type spaces”, Trudy Mat. Inst. Steklova, 181, Akad. Nauk SSSR, 1988, 70–94 (Russian) | MR | Zbl

[15] M. L. Goldman, R. A. Kerman, “On optimal embedding of Calderon spaces and generalized Besov spaces”, Proc. Steklov Inst. Math., 243, 2003, 154–184 | MR | Zbl

[16] M. L. Goldman, “Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces”, Contemporary Math., 424 (2007), 53–81 | DOI | MR | Zbl

[17] P. Gurka, B. Opic, “Sharp embeddings of Besov spaces with logarithmic smoothness”, Rev. Mat. Complut., 18 (2005), 81–110 | MR | Zbl

[18] K. Hansson, “Imbedding theorems of Sobolev type in potential theory”, Math. Scand., 45 (1979), 77–102 | MR | Zbl

[19] D. D. Haroske, S. D. Moura, “Continuity envelopes and sharp embeddings in spaces of generalized smoothness”, J. Funct. Anal., 254 (2008), 1487–1521 | DOI | MR | Zbl

[20] R. Kerman, L. Pick, “Optimal Sobolev imbeddings”, Forum Math., 18 (2006), 535–579 | DOI | MR

[21] V. I. Kolyada, “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117 | DOI | MR | Zbl

[22] G. Köthe, Topologische lineare Räume, Springer, Berlin, 1966 | MR | Zbl

[23] Amer. Math. Soc., Providence, 1982 | MR

[24] J. Maly, L. Pick, “An elementary proof of sharp Sobolev embeddings”, Proc. Amer. Math. Soc., 130 (2002), 555–563 | DOI | MR | Zbl

[25] J. Martin, M. Milman, “Symmetrization inequalities and Sobolev embeddings”, Proc. Amer. Math. Soc., 134 (2006), 2235–2247 | MR

[26] J. Martin, M. Milman, “Higher orger symmetrization inequalities and applications”, J. Math. Anal. and Appl., 330 (2007), 91–113 | DOI | MR | Zbl

[27] J. Martin, M. Milman, “Self-improving Sobolev-Poincare inequalities and symmetrization”, Potential Anal., 29 (2008), 391–408 | DOI | MR | Zbl

[28] J. Martin, M. Milman, E. Pustylnik, “Self improving Sobolev inequalities, truncation and symmetrization”, J. Funct. Anal., 252 (2007), 677–695 | DOI | MR | Zbl

[29] M. Milman, E. Pustylnik, “On sharp higher order Sobolev embeddings”, Comm. Contemp. Math., 6 (2004), 495–511 | DOI | MR | Zbl

[30] B. Muckenhoupt, “Hardy's inequality with weights”, Studia Math., 44 (1972), 31–38 | MR | Zbl

[31] Y. V. Netrusov, “Embedding theorems for Besov spaces in symmetric spaces”, Notes Sci. Sem. LOMI, 159, 1987, 69–102

[32] Springer-Verlag, New York–Heidelberg, 1975 | MR

[33] H. Triebel, Theory of function spaces III, Birkhäuser, Basel, 2006 | MR | Zbl