On families of linear polynomial operators generated by Riesz kernels
Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 124-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Families of linear polynomial operators generated by the Riesz kernels are studied. Sharp ranges of convergence are found in many cases. It is shown that the approximation error is equivalent to the polynomial $K$-functional related to the apropricate power of the Laplace operator, if the family converges.
@article{EMJ_2010_1_4_a6,
     author = {K. Runovski and H.-J. Schmeisser},
     title = {On families of linear polynomial operators generated by {Riesz} kernels},
     journal = {Eurasian mathematical journal},
     pages = {124--139},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a6/}
}
TY  - JOUR
AU  - K. Runovski
AU  - H.-J. Schmeisser
TI  - On families of linear polynomial operators generated by Riesz kernels
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 124
EP  - 139
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a6/
LA  - en
ID  - EMJ_2010_1_4_a6
ER  - 
%0 Journal Article
%A K. Runovski
%A H.-J. Schmeisser
%T On families of linear polynomial operators generated by Riesz kernels
%J Eurasian mathematical journal
%D 2010
%P 124-139
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a6/
%G en
%F EMJ_2010_1_4_a6
K. Runovski; H.-J. Schmeisser. On families of linear polynomial operators generated by Riesz kernels. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 124-139. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a6/

[1] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On the method of approximation by families of linear polynomial operators”, J. of Anal. and Appl., 19 (2000), 677–693 | MR | Zbl

[2] P. Butzer, R. Nessel, Fourier Analysis and Approximation, v. 1, Academic Press, New-York–London, 1971 | MR

[3] W. Chen, Z. Ditzian, “Best approximation and $K$-functionals”, Acta Math. Hungar., 75:3 (1997), 165–208 | DOI | MR | Zbl

[4] Z. Ditzian, “Measure of smoothness related to the Laplacian”, Trans. Am. Math. Soc., 326 (1991), 407–422 | DOI | MR | Zbl

[5] Z. Ditzian, “On Fejer and Bochner–Riesz means”, J. Fourier Analysis and Appl., 11 (2005), 489–496 | DOI | MR | Zbl

[6] Z. Ditzian, V. Hristov, K. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0

1$”, Constr. Approx., 11 (1995), 67–83 | DOI | MR | Zbl

[7] R. Girgensohn, “A unified view of classical summation kernels”, Results Math., 38 (2000), 48–57 | DOI | MR | Zbl

[8] L. Grafakos, Classical and modern Fourier analysis, Pearson, Upper Saddle River, 2004 | MR | Zbl

[9] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Series, Durham, 1976 | MR

[10] V. Rukasov, K. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators”, Functiones et Approximatio, 41:1 (2009), 41–54 | DOI | MR | Zbl

[11] V. Rukasov, K. Runovski, H.-J. Schmeisser, “Approximation by families of linear trigonometric polynomial operators and smoothness of functions”, Mathem. Nachrichten, 2011 (to appear) | MR

[12] Russian Acad. Sci. Sb. Math., 78 (1994), 165–173 | DOI | MR | Zbl

[13] Russian Acad. Sci. Sb. Math., 82 (1995), 441–459 | DOI | MR | Zbl

[14] K. Runovski, I. Rystsov, H.-J. Schmeisser, “Computational aspects of a method of stochastic approximation”, J. of Anal. and Appl., 25 (2006), 367–383 | MR | Zbl

[15] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein's inequalities for trigonometric polynomials”, Funct. et Approx., 29 (2001), 125–142 | MR

[16] K. Runovski, H.-J. Schmeisser, “On approximation methods generated by Bochner-Riesz kernels”, J. of Fourier Anal. and Appl., 14 (2008), 16–38 | DOI | MR | Zbl

[17] H.-J. Schmeisser, W. Sickel, “Characterization of periodic function spaces via means of Abel–Poisson and Bessel-potential type”, JAT, 61:2 (1990), 239–262 | MR | Zbl

[18] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[19] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971 | MR | Zbl

[20] W. Trebels, Multipliers for $(C,\alpha)$-bounded Fourier expansions in Banach spaces and approximation theory, Lecture Notes in Math., 329, Springer-Verlag, Berlin–New-York, 1973 | MR | Zbl

[21] R. M. Trigub, E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer, Dordrecht, 2004 | Zbl