Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_4_a6, author = {K. Runovski and H.-J. Schmeisser}, title = {On families of linear polynomial operators generated by {Riesz} kernels}, journal = {Eurasian mathematical journal}, pages = {124--139}, publisher = {mathdoc}, volume = {1}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a6/} }
TY - JOUR AU - K. Runovski AU - H.-J. Schmeisser TI - On families of linear polynomial operators generated by Riesz kernels JO - Eurasian mathematical journal PY - 2010 SP - 124 EP - 139 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a6/ LA - en ID - EMJ_2010_1_4_a6 ER -
K. Runovski; H.-J. Schmeisser. On families of linear polynomial operators generated by Riesz kernels. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 124-139. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a6/
[1] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On the method of approximation by families of linear polynomial operators”, J. of Anal. and Appl., 19 (2000), 677–693 | MR | Zbl
[2] P. Butzer, R. Nessel, Fourier Analysis and Approximation, v. 1, Academic Press, New-York–London, 1971 | MR
[3] W. Chen, Z. Ditzian, “Best approximation and $K$-functionals”, Acta Math. Hungar., 75:3 (1997), 165–208 | DOI | MR | Zbl
[4] Z. Ditzian, “Measure of smoothness related to the Laplacian”, Trans. Am. Math. Soc., 326 (1991), 407–422 | DOI | MR | Zbl
[5] Z. Ditzian, “On Fejer and Bochner–Riesz means”, J. Fourier Analysis and Appl., 11 (2005), 489–496 | DOI | MR | Zbl
[6] Z. Ditzian, V. Hristov, K. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0
1$”, Constr. Approx., 11 (1995), 67–83 | DOI | MR | Zbl[7] R. Girgensohn, “A unified view of classical summation kernels”, Results Math., 38 (2000), 48–57 | DOI | MR | Zbl
[8] L. Grafakos, Classical and modern Fourier analysis, Pearson, Upper Saddle River, 2004 | MR | Zbl
[9] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Series, Durham, 1976 | MR
[10] V. Rukasov, K. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators”, Functiones et Approximatio, 41:1 (2009), 41–54 | DOI | MR | Zbl
[11] V. Rukasov, K. Runovski, H.-J. Schmeisser, “Approximation by families of linear trigonometric polynomial operators and smoothness of functions”, Mathem. Nachrichten, 2011 (to appear) | MR
[12] Russian Acad. Sci. Sb. Math., 78 (1994), 165–173 | DOI | MR | Zbl
[13] Russian Acad. Sci. Sb. Math., 82 (1995), 441–459 | DOI | MR | Zbl
[14] K. Runovski, I. Rystsov, H.-J. Schmeisser, “Computational aspects of a method of stochastic approximation”, J. of Anal. and Appl., 25 (2006), 367–383 | MR | Zbl
[15] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein's inequalities for trigonometric polynomials”, Funct. et Approx., 29 (2001), 125–142 | MR
[16] K. Runovski, H.-J. Schmeisser, “On approximation methods generated by Bochner-Riesz kernels”, J. of Fourier Anal. and Appl., 14 (2008), 16–38 | DOI | MR | Zbl
[17] H.-J. Schmeisser, W. Sickel, “Characterization of periodic function spaces via means of Abel–Poisson and Bessel-potential type”, JAT, 61:2 (1990), 239–262 | MR | Zbl
[18] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl
[19] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971 | MR | Zbl
[20] W. Trebels, Multipliers for $(C,\alpha)$-bounded Fourier expansions in Banach spaces and approximation theory, Lecture Notes in Math., 329, Springer-Verlag, Berlin–New-York, 1973 | MR | Zbl
[21] R. M. Trigub, E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer, Dordrecht, 2004 | Zbl