Justification of the dynamical systems method for global homeomorphism
Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 116-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamical systems method (DSM) is justified for solving operator equations $F(u)=f$, where $F$ is a nonlinear operator in a Hilbert space $H$. It is assumed that $F$ is a global homeomorphism of $H$ onto $H$, that $F\in C^1_{loc}$, that is, it has the Fréchet derivative $F'(u)$ continuous with respect to $u$, that the operator $[F'(u)]^{-1}$ exists for all $u\in H$ and is bounded, $||[F'(u)]^{-1}||\leq m(u)$, where $m(u)>0$ depends on $u$, and is not necessarily uniformly bounded with respect to $u$. It is proved under these assumptions that the continuous analogue of the Newton's method \begin{equation} \dot u=-[F'(u)]^{-1}(F(u)-f),\qquad u(0)=u_0, \tag{1} \end{equation} converges strongly to the solution of the equation $F(u)=f$ for any $f\in H$ and any $u_0\in H$. The global (and even local) existence of the solution to the Cauchy problem $(1)$ was not established earlier without assuming that $F'(u)$ is Lipschitz-continuous. The case when $F$ is not a global homeomorphism but a monotone operator in $H$ is also considered.
@article{EMJ_2010_1_4_a5,
     author = {A. G. Ramm},
     title = {Justification of the dynamical systems method for global homeomorphism},
     journal = {Eurasian mathematical journal},
     pages = {116--123},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a5/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Justification of the dynamical systems method for global homeomorphism
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 116
EP  - 123
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a5/
LA  - en
ID  - EMJ_2010_1_4_a5
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Justification of the dynamical systems method for global homeomorphism
%J Eurasian mathematical journal
%D 2010
%P 116-123
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a5/
%G en
%F EMJ_2010_1_4_a5
A. G. Ramm. Justification of the dynamical systems method for global homeomorphism. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 116-123. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a5/

[1] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985 | MR | Zbl

[2] N. S. Hoang, A. G. Ramm, “Existence of solution to an evolution equation and a justification of the DSM for equations with monotone operators”, Comm. Math. Sci., 7:4 (2009), 1073–1079 | DOI | MR | Zbl

[3] N. S. Hoang, A. G. Ramm, “The dynamical systems method for solving nonlinear equations with monotone operators”, Asian-Europ. Math. Journ., 3:1 (2010), 57–105 | DOI | MR | Zbl

[4] N. S. Hoang, A. G. Ramm, “DSM of Newton-type for solving operator equations $F(u)=f$ with minimal smoothness assumptions on $F$”, International Journ. Comp. Sci. and Math. (IJCSM), 3:1–2 (2010), 3–55 | MR | Zbl

[5] A. G. Ramm, Dynamical systems method for solving operator equations, Elsevier, Amsterdam, 2007 | MR | Zbl

[6] A. G. Ramm, “Dynamical systems method and a homeomorphism theorem”, Amer. Math. Monthly, 113:10 (2006), 928–933 | DOI | MR | Zbl

[7] A. G. Ramm, “Dynamical systems method (DSM) and nonlinear problems”, Spectral Theory and Nonlinear Analysis, World Scientific Publishers, Singapore, 2005 | MR

[8] A. G. Ramm, “DSM for ill-posed equations with monotone operators”, Comm. in Nonlinear Sci. and Numer. Simulation, 10:8 (2005), 935–940 | DOI | MR | Zbl

[9] A. G. Ramm, “Dynamical systems method for solving operator equations”, Communic. in Nonlinear Sci. and Numer. Simulation, 9:2 (2004), 383–402 | DOI | MR | Zbl

[10] A. G. Ramm, “Dynamical systems method for solving nonlinear operator equations”, International Jour. of Applied Math. Sci., 1:1 (2004), 97–110 | Zbl

[11] A. G. Ramm, “Global convergence for ill-posed equations with monotone operators: the dynamical systems method”, J. Phys. A, 36 (2003), 249–254 | DOI | MR

[12] A. G. Ramm, “Implicit Function Theorem via the DSM”, Nonlinear Analysis: Theory, Methods and Appl., 72:3–4 (2010), 1916–1921 | DOI | MR | Zbl

[13] A. G. Ramm, “Asymptotic stability of solutions to abstract differential equations”, Journ. of Abstract Diff. Equations and Applications (JADEA), 1:1 (2010), 27–34 | MR | Zbl

[14] A. G. Ramm, “A nonlinear inequality and evolution problems”, Journ. Ineq. and Special Funct. (JIASF), 1:1 (2010), 1–9 | MR