Inverse extremal problem for variational functionals
Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 95-115

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate an inverse extremal problem for the variational functionals: to describe, under certain conditions, all types of variational functionals having a local extremum (in case of the space $C^1[a;b]$) or a compact extremum (in case of the Sobolev space $W^{1,2}[a;b]=H^1[a;b]$) at a given point of the corresponding function space. The non-locality conditions for a compact extrema of variational functionals are described as well.
@article{EMJ_2010_1_4_a4,
     author = {I. V. Orlov},
     title = {Inverse extremal problem for variational functionals},
     journal = {Eurasian mathematical journal},
     pages = {95--115},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a4/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Inverse extremal problem for variational functionals
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 95
EP  - 115
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a4/
LA  - en
ID  - EMJ_2010_1_4_a4
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Inverse extremal problem for variational functionals
%J Eurasian mathematical journal
%D 2010
%P 95-115
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a4/
%G en
%F EMJ_2010_1_4_a4
I. V. Orlov. Inverse extremal problem for variational functionals. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 95-115. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a4/