Inverse extremal problem for variational functionals
Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 95-115
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate an inverse extremal problem for the variational functionals: to describe, under certain conditions, all types of variational functionals having a local extremum (in case of the space $C^1[a;b]$) or a compact extremum (in case of the Sobolev space $W^{1,2}[a;b]=H^1[a;b]$) at a given point of the corresponding function space. The non-locality conditions for a compact extrema of variational functionals are described as well.
@article{EMJ_2010_1_4_a4,
author = {I. V. Orlov},
title = {Inverse extremal problem for variational functionals},
journal = {Eurasian mathematical journal},
pages = {95--115},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a4/}
}
I. V. Orlov. Inverse extremal problem for variational functionals. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 95-115. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a4/