Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_4_a3, author = {W.-S. Cheung and J. Ren and D. Zhao}, title = {Solvability of quasi-linear multi-point boundary value problem at resonance}, journal = {Eurasian mathematical journal}, pages = {78--94}, publisher = {mathdoc}, volume = {1}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/} }
TY - JOUR AU - W.-S. Cheung AU - J. Ren AU - D. Zhao TI - Solvability of quasi-linear multi-point boundary value problem at resonance JO - Eurasian mathematical journal PY - 2010 SP - 78 EP - 94 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/ LA - en ID - EMJ_2010_1_4_a3 ER -
W.-S. Cheung; J. Ren; D. Zhao. Solvability of quasi-linear multi-point boundary value problem at resonance. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 78-94. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/
[1] W.-S. Cheung, J. Ren, “On the existence of periodic solutions for a $p$-Laplacian Rayleigh equation”, Nonlinear Analysis TMA, 65 (2006), 2003–2012 | DOI | MR | Zbl
[2] W.-S. Cheung, J. Ren, “Periodic solutions for $p$-Laplacian Liénard equation with a deviating argument”, Nonlinear Analysis TMA, 59 (2004), 107–120 | MR | Zbl
[3] W.-S. Cheung, J. Ren, “Periodic solutions for $p$-Laplacian differential equation with multiple deviating arguments”, Nonlinear Analysis TMA, 62 (2005), 727–742 | DOI | MR | Zbl
[4] W. Feng, J. R. L. Webb, “Solvability of three point boundary value problems at resonance”, Nonlinear Analysis TMA, 30 (1997), 3227–3238 | DOI | MR | Zbl
[5] R. E. Gaines, J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977 | MR | Zbl
[6] W. Ge, J. Ren, “An extension of Mawhin's continuation theorem and its application to boundary value problems with a $p$-Laplacian”, Nonlinear Analysis TMA, 58 (2004), 477–488 | DOI | MR | Zbl
[7] C. P. Gupta, “A second order $M$-point boundary value problem at resonance”, Nonlinear Analysis TMA, 24 (1995), 1483–1489 | DOI | MR | Zbl
[8] G. L. Karakostas, P. Ch. Tsamatos, “On a nonlocal boundary value problem at resonance”, JMAA, 259:1 (2001), 209–218 | MR | Zbl
[9] Bing Liu, “Solvability of multi-point boundary value problem at resonance”, Applied Mathematics and Computation, 136 (2003), 353–377 | DOI | MR | Zbl
[10] B. Przeradzki, R. Stanczy, “Solvability of a multi-point boundary value problem at resonance”, JMAA, 264:2 (2001), 253–261 | MR | Zbl