Solvability of quasi-linear multi-point boundary value problem at resonance
Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 78-94
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the following second order quasi-linear differential equation:
$$
(\Phi_p(x'))'+f(t,x)=0,\qquad01,
$$
where $\Phi_p(s)=|s|^{p-2}s$, $p\geq2$, subject to certain boundary conditions. The criteria of solvability of these boundary value problems are given by employing the recent generalization of coincidence degree method. We also give an example to illustrate our conclusions.
@article{EMJ_2010_1_4_a3,
author = {W.-S. Cheung and J. Ren and D. Zhao},
title = {Solvability of quasi-linear multi-point boundary value problem at resonance},
journal = {Eurasian mathematical journal},
pages = {78--94},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/}
}
TY - JOUR AU - W.-S. Cheung AU - J. Ren AU - D. Zhao TI - Solvability of quasi-linear multi-point boundary value problem at resonance JO - Eurasian mathematical journal PY - 2010 SP - 78 EP - 94 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/ LA - en ID - EMJ_2010_1_4_a3 ER -
W.-S. Cheung; J. Ren; D. Zhao. Solvability of quasi-linear multi-point boundary value problem at resonance. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 78-94. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/