Solvability of quasi-linear multi-point boundary value problem at resonance
Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 78-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the following second order quasi-linear differential equation: $$ (\Phi_p(x'))'+f(t,x)=0,\qquad01, $$ where $\Phi_p(s)=|s|^{p-2}s$, $p\geq2$, subject to certain boundary conditions. The criteria of solvability of these boundary value problems are given by employing the recent generalization of coincidence degree method. We also give an example to illustrate our conclusions.
@article{EMJ_2010_1_4_a3,
     author = {W.-S. Cheung and J. Ren and D. Zhao},
     title = {Solvability of quasi-linear multi-point boundary value problem at resonance},
     journal = {Eurasian mathematical journal},
     pages = {78--94},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/}
}
TY  - JOUR
AU  - W.-S. Cheung
AU  - J. Ren
AU  - D. Zhao
TI  - Solvability of quasi-linear multi-point boundary value problem at resonance
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 78
EP  - 94
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/
LA  - en
ID  - EMJ_2010_1_4_a3
ER  - 
%0 Journal Article
%A W.-S. Cheung
%A J. Ren
%A D. Zhao
%T Solvability of quasi-linear multi-point boundary value problem at resonance
%J Eurasian mathematical journal
%D 2010
%P 78-94
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/
%G en
%F EMJ_2010_1_4_a3
W.-S. Cheung; J. Ren; D. Zhao. Solvability of quasi-linear multi-point boundary value problem at resonance. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 78-94. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a3/

[1] W.-S. Cheung, J. Ren, “On the existence of periodic solutions for a $p$-Laplacian Rayleigh equation”, Nonlinear Analysis TMA, 65 (2006), 2003–2012 | DOI | MR | Zbl

[2] W.-S. Cheung, J. Ren, “Periodic solutions for $p$-Laplacian Liénard equation with a deviating argument”, Nonlinear Analysis TMA, 59 (2004), 107–120 | MR | Zbl

[3] W.-S. Cheung, J. Ren, “Periodic solutions for $p$-Laplacian differential equation with multiple deviating arguments”, Nonlinear Analysis TMA, 62 (2005), 727–742 | DOI | MR | Zbl

[4] W. Feng, J. R. L. Webb, “Solvability of three point boundary value problems at resonance”, Nonlinear Analysis TMA, 30 (1997), 3227–3238 | DOI | MR | Zbl

[5] R. E. Gaines, J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977 | MR | Zbl

[6] W. Ge, J. Ren, “An extension of Mawhin's continuation theorem and its application to boundary value problems with a $p$-Laplacian”, Nonlinear Analysis TMA, 58 (2004), 477–488 | DOI | MR | Zbl

[7] C. P. Gupta, “A second order $M$-point boundary value problem at resonance”, Nonlinear Analysis TMA, 24 (1995), 1483–1489 | DOI | MR | Zbl

[8] G. L. Karakostas, P. Ch. Tsamatos, “On a nonlocal boundary value problem at resonance”, JMAA, 259:1 (2001), 209–218 | MR | Zbl

[9] Bing Liu, “Solvability of multi-point boundary value problem at resonance”, Applied Mathematics and Computation, 136 (2003), 353–377 | DOI | MR | Zbl

[10] B. Przeradzki, R. Stanczy, “Solvability of a multi-point boundary value problem at resonance”, JMAA, 264:2 (2001), 253–261 | MR | Zbl