On convergence of families of linear polynomial operators generated by matrices of multipliers
Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 112-133
Voir la notice de l'article provenant de la source Math-Net.Ru
The convergence of families of linear polynomial operators with kernels generated by matrices of multipliers is studied in the scale of the $L_p$-spaces with $0$. An element $a_{n,\,k}$ of generating matrix is represented as a sum of the value of the generator $\varphi(k/n)$ and a certain “small” remainder $r_{n,\,k}$. It is shown that under some conditions with respect to the remainder the convergence depends only on the properties of the Fourier transform of the generator $\varphi$. The results enable us to find explicit ranges for convergence of approximation methods generated by some classical kernels.
@article{EMJ_2010_1_3_a6,
author = {K. Runovski and H.-J. Schmeisser},
title = {On convergence of families of linear polynomial operators generated by matrices of multipliers},
journal = {Eurasian mathematical journal},
pages = {112--133},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a6/}
}
TY - JOUR AU - K. Runovski AU - H.-J. Schmeisser TI - On convergence of families of linear polynomial operators generated by matrices of multipliers JO - Eurasian mathematical journal PY - 2010 SP - 112 EP - 133 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a6/ LA - en ID - EMJ_2010_1_3_a6 ER -
%0 Journal Article %A K. Runovski %A H.-J. Schmeisser %T On convergence of families of linear polynomial operators generated by matrices of multipliers %J Eurasian mathematical journal %D 2010 %P 112-133 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a6/ %G en %F EMJ_2010_1_3_a6
K. Runovski; H.-J. Schmeisser. On convergence of families of linear polynomial operators generated by matrices of multipliers. Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 112-133. http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a6/