On convergence of families of linear polynomial operators generated by matrices of multipliers
Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 112-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The convergence of families of linear polynomial operators with kernels generated by matrices of multipliers is studied in the scale of the $L_p$-spaces with $0$. An element $a_{n,\,k}$ of generating matrix is represented as a sum of the value of the generator $\varphi(k/n)$ and a certain “small” remainder $r_{n,\,k}$. It is shown that under some conditions with respect to the remainder the convergence depends only on the properties of the Fourier transform of the generator $\varphi$. The results enable us to find explicit ranges for convergence of approximation methods generated by some classical kernels.
@article{EMJ_2010_1_3_a6,
     author = {K. Runovski and H.-J. Schmeisser},
     title = {On convergence of families of linear polynomial operators generated by matrices of multipliers},
     journal = {Eurasian mathematical journal},
     pages = {112--133},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a6/}
}
TY  - JOUR
AU  - K. Runovski
AU  - H.-J. Schmeisser
TI  - On convergence of families of linear polynomial operators generated by matrices of multipliers
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 112
EP  - 133
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a6/
LA  - en
ID  - EMJ_2010_1_3_a6
ER  - 
%0 Journal Article
%A K. Runovski
%A H.-J. Schmeisser
%T On convergence of families of linear polynomial operators generated by matrices of multipliers
%J Eurasian mathematical journal
%D 2010
%P 112-133
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a6/
%G en
%F EMJ_2010_1_3_a6
K. Runovski; H.-J. Schmeisser. On convergence of families of linear polynomial operators generated by matrices of multipliers. Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 112-133. http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a6/

[1] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On the method of approximation by families of linear polynomial operators”, J. of Anal. and Appl., 19 (2000), 677–693 | MR | Zbl

[2] R. DeVore, G. Lorentz, Constructive Approximation, Springer, Berlin, Heidelberg, New York, 1993 | MR | Zbl

[3] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, New Jersey, 2004 | MR | Zbl

[4] P. Korovkin, Linear operators and approximation theory, Fizmatgiz, Moscow, 1959 (in Russian) | MR

[5] V. Rukasov, K. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators”, Funct. et Approx., 41:1 (2008), 41–54 | DOI | MR

[6] Russian Acad. Sci. Sb. Math., 78 (1994), 165–173 | DOI | MR | Zbl

[7] Russian Acad. Sci. Sb. Math., 82 (1995), 441–459 | DOI | MR | Zbl

[8] K. Runovski, I. Rystsov, H.-J. Schmeisser, “Computational aspects of a method of stochastic approximation”, J. of Anal. and Appl., 25 (2006), 367–383 | MR | Zbl

[9] K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, Journal of Comp. Anal. and Appl., 6:3 (2004), 211–220 | MR

[10] K. Runovski, H.-J. Schmeisser, “On the families of operators generated by the Bochner–Riesz kernels”, J. of Fourier Anal. and Appl., 14 (2008), 16–38 | DOI | MR | Zbl

[11] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein's inequalities for trigonometric polynomials”, Funct. et Approx., 29 (2001), 125–142 | MR

[12] H.-J. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function Spaces, Geest Portig, Leipzig; Wiley, Chichester, 1987 | MR | Zbl

[13] S. B. Stechkin, “On the order of approximation of continuous functions”, Izv. Akad. Nauk USSR, 15 (1951), 219–242 (in Russian) | Zbl

[14] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[15] A. Zygmund, Trigonometric series, 1–2, Cambridge Univ. Press, Cambridge, 1990