Uniqueness of the solution to inverse scattering problem with backscattering data
Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 97-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $q(x)$ be real-valued compactly supported sufficiently smooth function. It is proved that the scattering data $A(-\beta,\beta,k)$ $\forall\beta\in S^2$, $\forall k>0$, determine $q$ uniquely.
@article{EMJ_2010_1_3_a5,
     author = {A. G. Ramm},
     title = {Uniqueness of the solution to inverse scattering problem with backscattering data},
     journal = {Eurasian mathematical journal},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a5/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Uniqueness of the solution to inverse scattering problem with backscattering data
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 97
EP  - 111
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a5/
LA  - en
ID  - EMJ_2010_1_3_a5
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Uniqueness of the solution to inverse scattering problem with backscattering data
%J Eurasian mathematical journal
%D 2010
%P 97-111
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a5/
%G en
%F EMJ_2010_1_3_a5
A. G. Ramm. Uniqueness of the solution to inverse scattering problem with backscattering data. Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 97-111. http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a5/

[1] B. Levin, Distribution of zeros of entire functions, AMS, Providence, RI, 1980 | MR | Zbl

[2] G. Polya, G. Szegő, Problems and theorems in analysis, problem III.6.5.322, v. 1, Springer Verlag, Berlin, 1983

[3] A. G. Ramm, “Uniqueness theorem for inverse scattering with non-overdetermined data”, J. Phys. A, 43 (2010), 112001 | DOI | MR | Zbl

[4] A. G. Ramm, “On the analytic continuation of the solution of the Schrödinger equation in the spectral parameter and the behavior of the solution to the nonstationary problem as $t\to\infty$”, Uspechi Mat. Nauk, 19 (1964), 192–194 (in Russian)

[5] A. G. Ramm, “Some theorems on analytic continuation of the Schrödinger operator resolvent kernel in the spectral parameter”, Izvestiya Acad. Nauk Armyan. SSR, Mathematics, 3 (1968), 443–464 (in Russian) | MR

[6] A. G. Ramm, “Recovery of the potential from fixed energy scattering data”, Inverse Problems, 4 (1988), 877–886 ; 5 (1989), 255 | DOI | MR | Zbl | DOI | MR | Zbl

[7] A. G. Ramm, “Stability estimates in inverse scattering”, Acta Appl. Math., 28:1 (1992), 1–42 | MR | Zbl

[8] A. G. Ramm, “Stability of the solution to inverse obstacle scattering problem”, J. Inverse and Ill-Posed Problems, 2:3 (1994), 269–275 | DOI | MR | Zbl

[9] A. G. Ramm, “Stability of solutions to inverse scattering problems with fixed-energy data”, Milan Journ of Math., 70 (2002), 97–161 | DOI | MR | Zbl

[10] A. G. Ramm, Inverse problems, Springer, New York, 2005 | MR

[11] A. G. Ramm, Scattering by obstacles, D. Reidel, Dordrecht, 1986 | MR | Zbl

[12] A. G. Ramm, A. I. Katsevich, The Radon transform and local tomography, CRC Press, Boca Raton, 1996 | MR | Zbl