Uniqueness of the solution to inverse scattering problem with backscattering data
Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 97-111

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $q(x)$ be real-valued compactly supported sufficiently smooth function. It is proved that the scattering data $A(-\beta,\beta,k)$ $\forall\beta\in S^2$, $\forall k>0$, determine $q$ uniquely.
@article{EMJ_2010_1_3_a5,
     author = {A. G. Ramm},
     title = {Uniqueness of the solution to inverse scattering problem with backscattering data},
     journal = {Eurasian mathematical journal},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a5/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Uniqueness of the solution to inverse scattering problem with backscattering data
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 97
EP  - 111
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a5/
LA  - en
ID  - EMJ_2010_1_3_a5
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Uniqueness of the solution to inverse scattering problem with backscattering data
%J Eurasian mathematical journal
%D 2010
%P 97-111
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a5/
%G en
%F EMJ_2010_1_3_a5
A. G. Ramm. Uniqueness of the solution to inverse scattering problem with backscattering data. Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 97-111. http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a5/