Coercive estimates and integral representation formulas on Carnot groups
Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 58-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

For general Carnot groups, we obtain coercive estimates for homogeneous differential operators with constant coefficients, kernels of which have finite dimension. We develop new Sobolev-type integral representations of differentiable functions which are a crucial tool for deriving coercive estimates. Moreover we prove some auxiliary results having independent interest, in particular, Sobolev type embedding and compactness theorems for John domains.
@article{EMJ_2010_1_3_a4,
     author = {D. V. Isangulova and S. K. Vodopyanov},
     title = {Coercive estimates and integral representation formulas on {Carnot} groups},
     journal = {Eurasian mathematical journal},
     pages = {58--96},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a4/}
}
TY  - JOUR
AU  - D. V. Isangulova
AU  - S. K. Vodopyanov
TI  - Coercive estimates and integral representation formulas on Carnot groups
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 58
EP  - 96
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a4/
LA  - en
ID  - EMJ_2010_1_3_a4
ER  - 
%0 Journal Article
%A D. V. Isangulova
%A S. K. Vodopyanov
%T Coercive estimates and integral representation formulas on Carnot groups
%J Eurasian mathematical journal
%D 2010
%P 58-96
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a4/
%G en
%F EMJ_2010_1_3_a4
D. V. Isangulova; S. K. Vodopyanov. Coercive estimates and integral representation formulas on Carnot groups. Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 58-96. http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a4/

[1] N. Aronszajn, “On coercive integro-differential quadratic forms”, Report, 14, Conference on Partial Differential Equations, Univ. of Kansas, 1954, 94–106

[2] O. V. Besov, “Coerciveness in a nonisotropic S. L. Sobolev space”, Mat. Sb. (N.S.), 73(115) (1967), 585–599 (in Russian) | MR | Zbl

[3] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, v. I, Scripta Series in Mathematics, V. H. Winston Sons, Washington, D.C.; John Wiley Sons, New York etc., 1978 ; v. II, 1979 | Zbl

[4] S. Buckley, P. Koskela, G. Lu, “Boman equals John”, Proc. XVI Rolf Nevanlinna colloq., 1996, 91–99 | MR | Zbl

[5] S. M. Buckley, “Strong doubling condition”, Math. Ineq. Appl., 1:4 (1998), 533–542 | MR | Zbl

[6] B. Franchi, C. E. Gutiérrez, R. L. Wheeden, “Weighted Sobolev–Poincaré inequalities for Grushin type operators”, Commun. Partial Differ. Equations, 19:3–4 (1994), 523–604 | DOI | MR | Zbl

[7] L. Capogna, N. Garofalo, “Non tangentially accessible domains for Carnot–Caratheódory metrics and a Fatou type theorem”, C. R. Acad. Sci., Paris, Sér. I, 321:12 (1995), 1565–1570 | MR | Zbl

[8] G. B. Folland, “Lipschitz classes and Poisson integrals on stratified groups”, Stud. Math., 66 (1979), 37–55 | MR | Zbl

[9] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, Princeton, New Jersey; University of Tokyo Press, 1982 | MR | Zbl

[10] B. Franchi, G. Lu, R. L. Wheeden, “Representation formulas and weighted Poincaré inequalities for Hörmander vector fields”, Ann. Inst. Fourier, Grenoble, 45:2 (1992), 577–604 | DOI | MR

[11] N. Garofalo, D.-M. Nhieu, “Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces”, Commun. Pure Appl. Math., 49:10 (1996), 1081–1144 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] P. Hajłasz, P. Koskela, Sobolev met Poincaré, Memoirs of the AMS, 688, 2000 | MR | Zbl

[13] D. Jerison, “The Poincaré inequality for vector fields satisfying Hörmander's condition”, Duke Math. J., 53 (1986), 503–523 | DOI | MR | Zbl

[14] F. John, “Rotation and strain”, Comm. Pure Appl. Math., 14 (1961), 391–413 | DOI | MR | Zbl

[15] P. W. Jones, “Quasiconformal mappings and extendability of functions in Sobolev spaces”, Acta Math., 147 (1981), 71–88 | DOI | MR | Zbl

[16] A. W. Knapp, E. M. Stein, “Intertwining operators for semisimple groups”, Ann. Math., 93:3 (1971), 489–578 | DOI | MR | Zbl

[17] J. Math. Sci. (N.Y.), 126:6 (2004), 4580–4596 | DOI | MR | Zbl

[18] G. Lu, “Local and global interpolation inequalities on the Folland–Stein Sobolev spaces and polynomials on stratified groups”, Math. Res. Lett., 4:6 (1997), 777–790 | DOI | MR

[19] G. Lu, “Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland–Stein spaces on stratified groups”, Acta Math. Sin., Engl. Ser., 16:3 (2000), 405–444 | DOI | MR | Zbl

[20] V. G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin etc., 1985 | MR | Zbl

[21] P. P. Mosolov, V. P. Mjasnikov, “Correctness of boundary value problems in the mechanics of continuous media”, Mat. Sb. (N.S.), 88 (1972), 256–267 | MR | Zbl

[22] A. Nagel, E. M. Stein, S. Wainger, “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math., 155 (1985), 103–147 | DOI | MR | Zbl

[23] A. I. Parfenov, “Straightenness criteria of Lipschitzian surface by Liezorkin–Triebel. I”, Mat. trudy, 12:1 (2009), 144–204 (in Russian) | MR | Zbl

[24] S. I. Pohozhaev, “On Sobolev embedding theorem in the case $lp=n$”, Proceedings of the Scientific and Technical Conference, Moscow Power Engineering Institute, 1965, 158–170 (in Russian)

[25] Sib. Mat. J., 49:2 (2008), 339–352 | DOI | MR | Zbl

[26] Yu. G. Reshetnyak, “Some integral representations of differentiable functions”, Sib. Mat. Zh., 12 (1971), 420–432 (in Russian) | DOI | MR | Zbl

[27] Yu. G. Reshetnyak, “Integral representations of differentiable functions in domains with nonsmooth boundary”, Sib. Math. J., 21:6 (1980), 833–839 | DOI | MR

[28] Yu. G. Reshetnyak, Stability theorems in geometry and analisys, Mathematics and its Applications (Dordrecht), 304, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[29] St. Petersbg. Math. J., 16:2 (2005), 349–375 | DOI | MR | Zbl

[30] Sib. Math. J., 49:1 (2008), 155–165 | DOI | MR | Zbl

[31] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. Lond. Math. Soc., II. Ser., 60:1 (1999), 237–257 | DOI | MR | Zbl

[32] V. S. Rychkov, “Littlewood–Paley theory and function spaces with $A_p^\text{loc}$ weights”, Math. Nachr., 224 (2001), 145–180 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[33] C. R. (Dokl.) Acad. Sci. URSS, New Ser., 1 (1936), 279–282 | Zbl

[34] S. L. Sobolev, “On one boundary problem for polyharmonic equations”, Rec. Math. Moscou, New Ser., 2 (1937), 465–499 (in Russian) | Zbl

[35] C. R. (Dokl.) Acad. Sci. URSS, New Ser., 20 (1938), 5–9 | Zbl

[36] S. L. Sobolev, “On one theorem of functional analisys”, Rec. Math. Moscou, New Ser., 4 (1938), 471–497 (in Russian) | Zbl

[37] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Translations of Mathematical Translations of Mathematical Monographs, 90, eds. 3rd ed., AMS, Providence, RI, 1991 | MR | Zbl

[38] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993 | MR | Zbl

[39] Math. Notes, 79:5 (2006), 707–718 | DOI | DOI | MR | Zbl

[40] S. K. Vodopyanov, “Equivalent normalizations of Sobolev and Nikol'skii spaces in domains. Boundary values and extension”, Function Spaces and Applications, Proceedings of the US – Swedish Seminar (Lund, Sweden, June 1986), Lecture notes in Mathematics, 1302, Springer-Verlag, Berlin a.o., 1988, 397–409 | DOI | MR

[41] Sib. Math. J., 33:2 (1992), 201–218 | DOI | MR | Zbl

[42] Sib. Math. J., 36:5 (1995), 873–901 | DOI | MR | Zbl

[43] Sib. Math. J., 47:4 (2006), 601–620 | DOI | MR | Zbl