Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_3_a3, author = {A. Kh. Khasanov}, title = {An inverse coefficient problem for nonlinear biharmonic equation with surface measured data}, journal = {Eurasian mathematical journal}, pages = {43--57}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a3/} }
TY - JOUR AU - A. Kh. Khasanov TI - An inverse coefficient problem for nonlinear biharmonic equation with surface measured data JO - Eurasian mathematical journal PY - 2010 SP - 43 EP - 57 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a3/ LA - en ID - EMJ_2010_1_3_a3 ER -
A. Kh. Khasanov. An inverse coefficient problem for nonlinear biharmonic equation with surface measured data. Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 43-57. http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a3/
[1] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl
[2] P. Ciarlet, Finite-element method for elliptic problems, North-Holland, Amsterdam, 1978 | MR | Zbl
[3] P. DuChateau, R. Thelwell, G. Butters, “Analysis of an adjoint problem approach to the identification of an unknown diffusion coefficient”, Inverse Problems, 20 (2004), 601–625 | DOI | MR | Zbl
[4] H. Gajewski, K. Greger, K. Zacharias, Nichtlineare operator gleichungen und operator differential gleichungen, Akademic-Verlag, Berlin, 1974
[5] A. Hasanov, A. Mamedov, “An inverse problem related to the determination of elastoplastic properties of a plate”, Inverse Problems, 10 (1994), 601–615 | DOI | MR | Zbl
[6] A. Hasanov, “An Inverse coefficient problem for an elasto-plastic medium”, SIAM J. Appl. Math., 55 (1995), 1736–1752 | DOI | MR | Zbl
[7] A. Hasanov, “Convexity argument for monotone potential operators”, Nonlinear Analysis: TMA, 47 (2000), 906–918
[8] A. Hasanov, “Variational approach to non-linear boundary value problems for elasto-plastic incompressible bending plate”, Int. J. Non-Linear Mech., 42 (2007), 711–721 | DOI | MR | Zbl
[9] A. Hasanov, “An inversion method for identification of elastoplastic properties for engineering materials from limited spherical indentation measurements”, Inverse Problems in Science and Engineering, 15:6 (2007), 601–627 | DOI | MR | Zbl
[10] A. Hasanov, “An introduction to inverse source and coefficient problems for PDEs based on boundary measured data”, Mathematics in Science and Technology, Abstracts of the Satellite Conference of International Congress of Mathematicians, eds. A. H. Siddigi, R. C. Singh, P. Manchanda, Delhi, 2010 | MR
[11] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of linear Ill-posed problems and its applications, Nauka, Moscow, 1978 | MR
[12] A. Kufner, S. Fučik, Nonlinear differential equations studies in applied mathematics, v. 2, Elsevier Scientific Publ. Comp., Amsterdam, 1980 | MR | Zbl
[13] L. Liu, N. Ogasawara, N. Chiba, X. Chen, “Can indentation test measure unique elastoplastic properties”, J. Material Research, 24:3 (2009), 784–800 | DOI
[14] S. G. Mikhlin, Variational methods in mathematical physics, Pergamon, New York, 1964 | MR
[15] A. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, 49, Amer. Math. Soc., Providence, 1997 | MR | Zbl