Estimates for the widths of classes of periodic functions of several variables~--~I
Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 11-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish estimates sharp in order for the Kolmogorov and linear widths of the classes $\mathrm{B}^{s\,m}_{p\,q}(\,\mathbb{T}^k)$ and $\mathrm{L}^{s\,m}_{p\,q}(\,\mathbb{T}^k)$ of Nikol'skii–Besov, Lizorkin–Triebel types respectively, in the space $L_r(\mathbb{T}^k)$ for a certain range of the parameters $s,p,q,r$, and $m$.
@article{EMJ_2010_1_3_a1,
     author = {D. B. Bazarkhanov},
     title = {Estimates for the widths of classes of periodic functions of several {variables~--~I}},
     journal = {Eurasian mathematical journal},
     pages = {11--26},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Estimates for the widths of classes of periodic functions of several variables~--~I
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 11
EP  - 26
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a1/
LA  - en
ID  - EMJ_2010_1_3_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Estimates for the widths of classes of periodic functions of several variables~--~I
%J Eurasian mathematical journal
%D 2010
%P 11-26
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a1/
%G en
%F EMJ_2010_1_3_a1
D. B. Bazarkhanov. Estimates for the widths of classes of periodic functions of several variables~--~I. Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 11-26. http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a1/

[1] T. Amanov, Spaces of differentiable functions with dominating mixed derivative, Nauka, Alma-Ata, 1976 (in Russian) | MR

[2] D. B. Bazarkhanov, “Estimates for linear widths of unit ball of Nikol'skii–Besov space with generalized mixed smoothness”, Math. J., 8:4 (2008), 44–47 (in Russian) | MR

[3] Acad. Sci. Dokl. Math., 79:3 (2009), 305–308 | DOI | MR | Zbl

[4] Proc. Steklov Inst. Math., 269:1 (2010), 2–24 | DOI | MR | MR | Zbl

[5] Math. Notes, 59:2 (1996), 133–140 | DOI | DOI | MR | Zbl

[6] Math. Notes, 69:5–6 (2001), 605–613 | DOI | DOI | MR | Zbl

[7] Mathematics of the USSR-Sbornik, 48:1 (1984), 173–182 | DOI | MR | MR | Zbl | Zbl

[8] M. Hansen, J. Vybiral, “The Jawerth–Franke embedding of spaces with dominating mixed smoothness”, Georgian Math. J., 16:4 (2009), 667–682 | MR | Zbl

[9] Mathematics of the USSR-Izvestiya, 11:2 (1977), 317–333 | DOI | MR | Zbl | Zbl

[10] A. N. Kolmogoroff, “Über die beste annäherung von funktionen einer gegebenen funktionenklasse”, Ann. Math., 37:1 (1936), 107–111 | DOI | MR

[11] N. P. Korneichuk, Exact constants in approximation theory, Nauka, Moscow, 1987 (in Russian) | MR

[12] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, 37, Cambridge Univ. Press, 1992 | MR | Zbl

[13] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Nauka, Moscow, 1977 (Russian) | MR

[14] Ukrainian Math. J., 43:10 (1991), 1297–1306 | DOI | MR | Zbl

[15] Ukrainian Math. J., 45:5 (1993), 724–738 | DOI | MR | Zbl

[16] Ukrainian Math. J., 53:5 (2001), 744–761 | DOI | MR | Zbl

[17] Ukrainian Math. J., 53:6 (2001), 965–977 | DOI | MR | Zbl

[18] H.-J. Schmeisser, “Recent developments in the theory of function spaces with dominating mixed smoothness”, Nonlinear Analysis, Function Spaces and Application, Proc. Spring School (Prague, May 30–June 6, 2006), v. 8, Czech Acad. Sci., Math. Inst., Prague, 2007, 145–204 | MR | Zbl

[19] H.-J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, J. Wiley and Sons, Chichester, 1987 | MR

[20] Proc. Steklov Inst. Math., 178 (1989), 1–121 | MR | MR

[21] V. N. Temlyakov, Approximation of periodic functions, Nova Sci. Publ., Commack, New York, 1993 | MR | Zbl

[22] V. M. Tikhomirov, “Widths of sets in function spaces and the theory of best approximation”, Uspekhi Math. Nauk, 15 (1960), 81–120 (in Russian) | Zbl