On summability of the Fourier coefficients in bounded orthonormal systems for functions from some Lorentz type spaces
Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 76-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We denote by $\Lambda_\beta(\lambda),$ $\beta>0,$ the Lorentz space equipped with the (quasi) norm $$ \|f\|_{\Lambda_\beta(\lambda)}:=\left(\int_0^1\left(f^*(t)t\lambda\left(\frac1t\right)\right)^\beta\frac{dt}{t}\right)^{\frac1\beta} $$ for a function $f$ on [0,1] and with $\lambda$ positive and equipped with some additional growth properties. Some estimates of this quantity and some corresponding sums of Fourier coefficients are proved for the case with a general orthonormal bounded system.
@article{EMJ_2010_1_2_a4,
     author = {A. N. Kopezhanova and L.-E. Persson},
     title = {On summability of the {Fourier} coefficients in bounded orthonormal systems for functions from some {Lorentz} type spaces},
     journal = {Eurasian mathematical journal},
     pages = {76--85},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a4/}
}
TY  - JOUR
AU  - A. N. Kopezhanova
AU  - L.-E. Persson
TI  - On summability of the Fourier coefficients in bounded orthonormal systems for functions from some Lorentz type spaces
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 76
EP  - 85
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a4/
LA  - en
ID  - EMJ_2010_1_2_a4
ER  - 
%0 Journal Article
%A A. N. Kopezhanova
%A L.-E. Persson
%T On summability of the Fourier coefficients in bounded orthonormal systems for functions from some Lorentz type spaces
%J Eurasian mathematical journal
%D 2010
%P 76-85
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a4/
%G en
%F EMJ_2010_1_2_a4
A. N. Kopezhanova; L.-E. Persson. On summability of the Fourier coefficients in bounded orthonormal systems for functions from some Lorentz type spaces. Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 76-85. http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a4/

[1] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer Verlag, Berlin, New York, 1976 | DOI | MR | Zbl

[2] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1952 | MR

[3] A. N. Kopezhanova, E. D. Nursultanov, L.-E. Persson, On summability of the Fourier coefficients for functions from some Lorentz type spaces, Research Report 8, University of Technology, Department of Mathematics, Luleå, 2009

[4] G. G. Lorentz, “Some new functional spaces”, Ann. of Math., 51:2 (1950), 37–55 | DOI | MR | Zbl

[5] L.-E. Persson, Relations between regularity of periodic functions and their Fourier series, Ph.D thesis, University, Dept. of Math., Umeå, 1974 | Zbl

[6] L.-E. Persson, “Relations between summability of functions and Fourier series”, Acta Math. Acad. Sci. Hungar., 27:3–4 (1976), 267–280 | DOI | MR | Zbl

[7] E. M. Stein, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR | Zbl