Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach
Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 31-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega^{i}$ and $\Omega^{o}$ be two bounded open subsets of $\mathbb{R}^{n}$ containing $0$. Let $G^{i}$ be a (nonlinear) map from $\partial\Omega^{i}\times\mathbb{R}^{n}$ to $\mathbb{R}^{n}$. Let $a^{o}$ be a map from $\partial\Omega^{o}$ to the set $M_{n}(\mathbb{R})$ of $n\times n$ matrices with real entries. Let $g$ be a function from $\partial\Omega^{o}$ to $\mathbb{R}^{n}$. Let $\gamma$ be a positive valued function defined on a right neighborhood of $0$ in the real line. Let $T$ be a map from $]1-(2/n),+\infty[\times M_{n}(\mathbb{R})$ to $M_{n}(\mathbb{R})$. Then we consider the problem \[ \{ \begin{array}{ll} \mathrm{div} (T(\omega,Du))=0 {\mathrm{in}} \Omega^{o}\setminus\epsilon\mathrm{cl}\Omega^{i} , -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}(x/ \epsilon, \gamma(\epsilon)\epsilon^{-1}(\log\epsilon)^{-\delta_{2,n}} u(x)) \forall x\in\epsilon\partial\Omega^{i} , T(\omega,Du(x))\nu^{o}(x)=a^{o}(x)u(x)+g(x) \forall x\in\partial\Omega^{o} , \end{array} . \] where $\nu_{\epsilon\Omega^{i}}$ and $\nu^{o}$ denote the outward unit normal to $\epsilon\partial \Omega^{i}$ and $\partial\Omega^{o}$, respectively, and where $\epsilon>0$ is a small parameter. Here $(\omega-1)$ plays the role of ratio between the first and second Lamé constants, and $T(\omega,\cdot)$ denotes (a constant multiple of) the linearized Piola Kirchhoff stress tensor, and $\delta_{2,n}$ denotes the Kronecker symbol. Under the condition that $\gamma$ generates a very strong singularity, i.e., the case in which $\lim_{\epsilon\to 0^{+}}\frac{\gamma(\epsilon)}{\epsilon^{n-1}}$ exists in $[0,+\infty[$, we prove that under suitable assumptions the above problem has a family of solutions $\{u(\epsilon,\cdot)\}_{\epsilon\in ]0,\epsilon'[}$ for $\epsilon'$ sufficiently small and we analyze the behavior of such a family as $\epsilon$ is close to $0$ by an approach which is alternative to those of asymptotic analysis.
@article{EMJ_2010_1_2_a2,
     author = {M. Dalla Riva and M. Lanza de Cristoforis},
     title = {Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. {A~functional} analytic approach},
     journal = {Eurasian mathematical journal},
     pages = {31--58},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/}
}
TY  - JOUR
AU  - M. Dalla Riva
AU  - M. Lanza de Cristoforis
TI  - Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 31
EP  - 58
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/
LA  - en
ID  - EMJ_2010_1_2_a2
ER  - 
%0 Journal Article
%A M. Dalla Riva
%A M. Lanza de Cristoforis
%T Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach
%J Eurasian mathematical journal
%D 2010
%P 31-58
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/
%G en
%F EMJ_2010_1_2_a2
M. Dalla Riva; M. Lanza de Cristoforis. Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach. Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 31-58. http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/

[1] J. M. Ball, “Discontinuous equilibrium solutions and cavitation in nonlinear elasticity”, Philos. Trans. Roy. Soc. London Ser. A, 306 (1982), 557–611 | DOI | MR | Zbl

[2] M. Dalla Riva, M. Lanza de Cristoforis, “A singularly perturbed nonlinear traction boundary value problem for linearized elastostatics. A functional analytic approach”, Analysis (München), 30 (2010), 67–92 | DOI | MR | Zbl

[3] M. Dalla Riva, M. Lanza de Cristoforis, “Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach”, Complex Variables and Elliptic Equations, 2009 (to appear) | MR

[4] M. Dalla Riva, M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem. A functional analytic approach, typewritten manuscript, 2009, 1–20 | MR

[5] G. Dal Maso, F. Murat, “Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 445–486 | DOI | MR | Zbl

[6] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, 1983 | MR | Zbl

[7] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, 1957 | MR | Zbl

[8] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, Asymptotic analysis of fields in multistructures, Oxford Mathematical Monographs, The Clarendon Press, New York; Oxford University Press, 1999 | DOI

[9] V. D. Kupradze, Potential methods in the theory of elasticity, translated from the Russian by H. Gutfreund. Translation edited by I. Meroz, Israel Program for Scientific Translations, Jerusalem, 1965 | MR

[10] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland Publ. Co., Amsterdam, 1979 | MR | Zbl

[11] M. Lanza de Cristoforis, “Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach”, Complex Variables and Elliptic Equations, 52 (2007), 945–977 | DOI | MR | Zbl

[12] M. Lanza de Cristoforis, “Properties and pathologies of the composition and inversion operators in Schauder spaces”, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 15 (1991), 93–109 | MR | Zbl

[13] M. Lanza de Cristoforis, L. Rossi, “Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density”, J. Integral Equations Appl., 16 (2004), 137–174 | DOI | MR | Zbl

[14] V. G. Mazya, S. A. Nazarov, B. A. Plamenewskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, translation of the original in German published by Akademie Verlag 1991, v. I, Operator Theory: Advances and Applications, 111, Birkhäuser Verlag, Basel, 2000 ; v. II, 112 | MR | Zbl | MR | Zbl

[15] S. G. Mikhlin, S. Prössdorf, Singular integral operators, Springer-Verlag, Berlin, 1986 | MR

[16] N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Translation by J. R. M. Radok, P. Noordhoff N. V., Groningen, 1953 | MR

[17] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Translation by J. R. M. Radok, P. Noordhoff N. V., Groningen, 1953 | MR

[18] S. Ozawa, “Electrostatic capacity and eigenvalues of the Laplacian”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 53–62 | MR | Zbl

[19] L. Preciso, “Regularity of the composition and of the inversion operator and perturbation analysis of the conformal sewing problem in Romieu type spaces”, Nat. Acad. Sci. Belarus, Proc. Inst. Math., 5 (2000), 99–104 | Zbl

[20] G. Prodi, A. Ambrosetti, Analisi non lineare, Editrice Tecnico Scientifica, Pisa, 1973

[21] Sov. Math. Dokl., 6 (1965), 929–932 | MR

[22] M. J. Ward, J. B. Keller, “Strong localized perturbations of eigenvalue problems”, SIAM J. Appl. Math., 53 (1993), 770–798 | DOI | MR | Zbl