Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_2_a2, author = {M. Dalla Riva and M. Lanza de Cristoforis}, title = {Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. {A~functional} analytic approach}, journal = {Eurasian mathematical journal}, pages = {31--58}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/} }
TY - JOUR AU - M. Dalla Riva AU - M. Lanza de Cristoforis TI - Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach JO - Eurasian mathematical journal PY - 2010 SP - 31 EP - 58 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/ LA - en ID - EMJ_2010_1_2_a2 ER -
%0 Journal Article %A M. Dalla Riva %A M. Lanza de Cristoforis %T Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach %J Eurasian mathematical journal %D 2010 %P 31-58 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/ %G en %F EMJ_2010_1_2_a2
M. Dalla Riva; M. Lanza de Cristoforis. Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach. Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 31-58. http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/
[1] J. M. Ball, “Discontinuous equilibrium solutions and cavitation in nonlinear elasticity”, Philos. Trans. Roy. Soc. London Ser. A, 306 (1982), 557–611 | DOI | MR | Zbl
[2] M. Dalla Riva, M. Lanza de Cristoforis, “A singularly perturbed nonlinear traction boundary value problem for linearized elastostatics. A functional analytic approach”, Analysis (München), 30 (2010), 67–92 | DOI | MR | Zbl
[3] M. Dalla Riva, M. Lanza de Cristoforis, “Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach”, Complex Variables and Elliptic Equations, 2009 (to appear) | MR
[4] M. Dalla Riva, M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem. A functional analytic approach, typewritten manuscript, 2009, 1–20 | MR
[5] G. Dal Maso, F. Murat, “Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 445–486 | DOI | MR | Zbl
[6] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, 1983 | MR | Zbl
[7] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, 1957 | MR | Zbl
[8] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, Asymptotic analysis of fields in multistructures, Oxford Mathematical Monographs, The Clarendon Press, New York; Oxford University Press, 1999 | DOI
[9] V. D. Kupradze, Potential methods in the theory of elasticity, translated from the Russian by H. Gutfreund. Translation edited by I. Meroz, Israel Program for Scientific Translations, Jerusalem, 1965 | MR
[10] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland Publ. Co., Amsterdam, 1979 | MR | Zbl
[11] M. Lanza de Cristoforis, “Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach”, Complex Variables and Elliptic Equations, 52 (2007), 945–977 | DOI | MR | Zbl
[12] M. Lanza de Cristoforis, “Properties and pathologies of the composition and inversion operators in Schauder spaces”, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 15 (1991), 93–109 | MR | Zbl
[13] M. Lanza de Cristoforis, L. Rossi, “Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density”, J. Integral Equations Appl., 16 (2004), 137–174 | DOI | MR | Zbl
[14] V. G. Mazya, S. A. Nazarov, B. A. Plamenewskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, translation of the original in German published by Akademie Verlag 1991, v. I, Operator Theory: Advances and Applications, 111, Birkhäuser Verlag, Basel, 2000 ; v. II, 112 | MR | Zbl | MR | Zbl
[15] S. G. Mikhlin, S. Prössdorf, Singular integral operators, Springer-Verlag, Berlin, 1986 | MR
[16] N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Translation by J. R. M. Radok, P. Noordhoff N. V., Groningen, 1953 | MR
[17] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Translation by J. R. M. Radok, P. Noordhoff N. V., Groningen, 1953 | MR
[18] S. Ozawa, “Electrostatic capacity and eigenvalues of the Laplacian”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 53–62 | MR | Zbl
[19] L. Preciso, “Regularity of the composition and of the inversion operator and perturbation analysis of the conformal sewing problem in Romieu type spaces”, Nat. Acad. Sci. Belarus, Proc. Inst. Math., 5 (2000), 99–104 | Zbl
[20] G. Prodi, A. Ambrosetti, Analisi non lineare, Editrice Tecnico Scientifica, Pisa, 1973
[21] Sov. Math. Dokl., 6 (1965), 929–932 | MR
[22] M. J. Ward, J. B. Keller, “Strong localized perturbations of eigenvalue problems”, SIAM J. Appl. Math., 53 (1993), 770–798 | DOI | MR | Zbl