Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach
Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 31-58

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega^{i}$ and $\Omega^{o}$ be two bounded open subsets of $\mathbb{R}^{n}$ containing $0$. Let $G^{i}$ be a (nonlinear) map from $\partial\Omega^{i}\times\mathbb{R}^{n}$ to $\mathbb{R}^{n}$. Let $a^{o}$ be a map from $\partial\Omega^{o}$ to the set $M_{n}(\mathbb{R})$ of $n\times n$ matrices with real entries. Let $g$ be a function from $\partial\Omega^{o}$ to $\mathbb{R}^{n}$. Let $\gamma$ be a positive valued function defined on a right neighborhood of $0$ in the real line. Let $T$ be a map from $]1-(2/n),+\infty[\times M_{n}(\mathbb{R})$ to $M_{n}(\mathbb{R})$. Then we consider the problem \[ \{ \begin{array}{ll} \mathrm{div} (T(\omega,Du))=0 {\mathrm{in}} \Omega^{o}\setminus\epsilon\mathrm{cl}\Omega^{i} , -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}(x/ \epsilon, \gamma(\epsilon)\epsilon^{-1}(\log\epsilon)^{-\delta_{2,n}} u(x)) \forall x\in\epsilon\partial\Omega^{i} , T(\omega,Du(x))\nu^{o}(x)=a^{o}(x)u(x)+g(x) \forall x\in\partial\Omega^{o} , \end{array} . \] where $\nu_{\epsilon\Omega^{i}}$ and $\nu^{o}$ denote the outward unit normal to $\epsilon\partial \Omega^{i}$ and $\partial\Omega^{o}$, respectively, and where $\epsilon>0$ is a small parameter. Here $(\omega-1)$ plays the role of ratio between the first and second Lamé constants, and $T(\omega,\cdot)$ denotes (a constant multiple of) the linearized Piola Kirchhoff stress tensor, and $\delta_{2,n}$ denotes the Kronecker symbol. Under the condition that $\gamma$ generates a very strong singularity, i.e., the case in which $\lim_{\epsilon\to 0^{+}}\frac{\gamma(\epsilon)}{\epsilon^{n-1}}$ exists in $[0,+\infty[$, we prove that under suitable assumptions the above problem has a family of solutions $\{u(\epsilon,\cdot)\}_{\epsilon\in ]0,\epsilon'[}$ for $\epsilon'$ sufficiently small and we analyze the behavior of such a family as $\epsilon$ is close to $0$ by an approach which is alternative to those of asymptotic analysis.
@article{EMJ_2010_1_2_a2,
     author = {M. Dalla Riva and M. Lanza de Cristoforis},
     title = {Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. {A~functional} analytic approach},
     journal = {Eurasian mathematical journal},
     pages = {31--58},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/}
}
TY  - JOUR
AU  - M. Dalla Riva
AU  - M. Lanza de Cristoforis
TI  - Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 31
EP  - 58
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/
LA  - en
ID  - EMJ_2010_1_2_a2
ER  - 
%0 Journal Article
%A M. Dalla Riva
%A M. Lanza de Cristoforis
%T Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach
%J Eurasian mathematical journal
%D 2010
%P 31-58
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/
%G en
%F EMJ_2010_1_2_a2
M. Dalla Riva; M. Lanza de Cristoforis. Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach. Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 31-58. http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a2/