Cubature formulas of S.\,L.~Sobolev: evolution of the theory and applications
Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 123-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains the description of the theory of approximate calculation of integrals over arbitrary multi-dimensional domains. This research branch is developed in several research centers in Russia and, in particular, in the Ufa Mathematical Institute of the Russian Academy of Sciences. We consider the best approximations of linear functionals on a certain semi-Banach space $B$ by linear combinations of the Dirac functions with supports in the nodes of a certain lattice: $$ (l_N,f)\equiv\int\limits_\Omega f(x)\,dx-\sum_{k\in\mathbb{Z}^n,\atop H_N k\in\Omega}c_k f(H_N k), $$ where $H_N$ is an $n\times n$ matrix, such that $\det H_N\ne 0$ and $\det H_N\to 0$ as $N\to\infty$ and $f\colon\mathbb{R}^n\to\mathbb{C}$, $f\in B\subset C(\mathbb{R}^n)$. This setting of the problem was given by academician Sergei L'vovich Sobolev in the middle of the last century.
@article{EMJ_2010_1_1_a9,
     author = {M. D. Ramazanov and D. Y. Rakhmatullin and E. L. Bannikova},
     title = {Cubature formulas of {S.\,L.~Sobolev:} evolution of the theory and applications},
     journal = {Eurasian mathematical journal},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a9/}
}
TY  - JOUR
AU  - M. D. Ramazanov
AU  - D. Y. Rakhmatullin
AU  - E. L. Bannikova
TI  - Cubature formulas of S.\,L.~Sobolev: evolution of the theory and applications
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 123
EP  - 136
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a9/
LA  - en
ID  - EMJ_2010_1_1_a9
ER  - 
%0 Journal Article
%A M. D. Ramazanov
%A D. Y. Rakhmatullin
%A E. L. Bannikova
%T Cubature formulas of S.\,L.~Sobolev: evolution of the theory and applications
%J Eurasian mathematical journal
%D 2010
%P 123-136
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a9/
%G en
%F EMJ_2010_1_1_a9
M. D. Ramazanov; D. Y. Rakhmatullin; E. L. Bannikova. Cubature formulas of S.\,L.~Sobolev: evolution of the theory and applications. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 123-136. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a9/

[1] K. I. Babenko, Basics of numerical analysis, Nauka, Moscow, 1986 (in Russian) | MR

[2] E. L. Bannikova, The programme of numerical solution of Fredholm integral equations “IntUr”, Certificate of registration 10418 of 15.04.2008 in the Sectoral fund of algorithms and programs

[3] V. I. Polovinkin, “Asymptotical optimality of sequences of formulas with regular boundary layer for odd $m$”, Siberian Mathematical Journal, 16:2 (1975), 328–335 (in Russian) | DOI | MR | Zbl

[4] D. Y. Rakhmatullin, The programme “CubaInt”, Certificate of registration 2007614331 of 10.10.2007 in EVM programme registry

[5] M. D. Ramazanov, Lectures about the theory of approximate integration, BSU, Ufa, 1973 (in Russian)

[6] M. D. Ramazanov, “To the $L_p$-theory of Sobolev formulas”, Siberian advances in mathematics, 9:1 (1999), 99–125 | MR | Zbl

[7] M. D. Ramazanov, “The periodic optimal cubature formula on $\widetilde{W}_{p}^{m}$ space”, Vychislitelnye technologii, 11, Spec. Issue, Krasnoyarsk, 2006, 90–96 (in Russian) | Zbl

[8] M. D. Ramazanov, “Asymptotically optimal sequences of cubature formulas with bounded boundary layer and non-negative coefficients”, Vestnik Bashkirskogo gosudarstvennogo universiteta, 2006, no. 1 (in Russian) | MR

[9] M. D. Ramazanov, Theory of lattice cubature formulas, IMCC USC RAS, Ufa, 2009, 178 pp. (in Russian)

[10] M. D. Ramazanov, “Lattice cubature formulas on Winer spaces”, Cubature formulas and applications, Trudy IX seminara-soveschaniya, IMCC USC RAS, Ufa, 2007, 128–137

[11] S. L. Sobolev, Introduction to the theory of cubature formulas, Nauka, Moscow, 1974 (in Russian) | MR

[12] S. L. Sobolev, V. L. Vaskevich, The Theory of Cubature Formulas, Kluwer Academic Publishers, 1997 | MR | Zbl