On the sharpneess of a certain spectral stability estimate for the Dirichlet Laplacian
Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 111-122
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a spectral stability estimate by Burenkov and Lamberti concerning the variation of the eigenvalues of second order uniformly elliptic operators on variable open sets in the $N$-dimensional euclidean space, and we prove that it is sharp for any dimension $N$. This is done by studying the eigenvalue problem for the Dirichlet Laplacian on special open sets inscribed in suitable spherical cones.
@article{EMJ_2010_1_1_a8,
author = {P. D. Lamberti and M. Perin},
title = {On the sharpneess of a certain spectral stability estimate for the {Dirichlet} {Laplacian}},
journal = {Eurasian mathematical journal},
pages = {111--122},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a8/}
}
TY - JOUR AU - P. D. Lamberti AU - M. Perin TI - On the sharpneess of a certain spectral stability estimate for the Dirichlet Laplacian JO - Eurasian mathematical journal PY - 2010 SP - 111 EP - 122 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a8/ LA - en ID - EMJ_2010_1_1_a8 ER -
P. D. Lamberti; M. Perin. On the sharpneess of a certain spectral stability estimate for the Dirichlet Laplacian. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 111-122. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a8/