On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations
Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 54-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear differential operator $P(D)$ with constant coefficients is called almost hypoelliptic if all derivatives $P^{(\nu)}(\xi)$ of the characteristic polynomial $P(\xi)$ can be estimated above via $P(\xi)$. In this paper it is proved that all solutions of the equation $P(D)u=f$ where $f$ and all its derivatives are square integrable with a certain exponential weight, which are square integrable with the same weight, are also such that all their derivatives are square integrable with this weight, if and only if the operator $P(D)$ is almost hypoelliptic.
@article{EMJ_2010_1_1_a6,
     author = {H. G. Ghazaryan and V. N. Margaryan},
     title = {On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations},
     journal = {Eurasian mathematical journal},
     pages = {54--72},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a6/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
AU  - V. N. Margaryan
TI  - On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 54
EP  - 72
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a6/
LA  - en
ID  - EMJ_2010_1_1_a6
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%A V. N. Margaryan
%T On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations
%J Eurasian mathematical journal
%D 2010
%P 54-72
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a6/
%G en
%F EMJ_2010_1_1_a6
H. G. Ghazaryan; V. N. Margaryan. On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 54-72. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a6/

[1] R. A. Adams, Sobolev spaces, Academic press, New York, San Francisco, London, 1975 | MR | Zbl

[2] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral representations of functions and embedding theorems, Nauka, Moscow, 1975 (in Russian) ; English transl. v. 1, John Wiley and sons, New York, 1978 ; v. 2, 1979 | MR | Zbl | Zbl

[3] Ya. S. Bugrov, “Embedding theorems for some function spaces”, Proc. Steklov Inst. Math., 77, 1965, 45–64 (in Russian) | MR | Zbl

[4] V. I. Burenkov, “An analogue of Hörmander's theorem on hypoellipticity for functions converging to 0 at infinity”, Proc. 7th Soviet – Czechoslovak Seminar (Yerevan, 1982), 63–67 (in Russian)

[5] V. I. Burenkov, Sobolev spaces on domains, Teubner–Texte zur Mathematic, 137, B. G. Teubner, Stuttgart, Leipzig, 1998 | DOI | MR | Zbl

[6] V. I. Burenkov, Investigation of spaces of differentiable functions defined on irregular domains, Doctor's degree thesis, Steklov Inst. Math., Moscow, 1982 (in Russian)

[7] V. I. Burenkov, “Conditional hypoellipticity and Fourier multipliers in weighted $L_p$-spaces with an exponential weight”, Proc. of the Summer School “Function spaces, differential operators, nonlinear analysis”, held in Fridrichroda in 1993, Teubner-Texte zur Mathematik, 133, B. G. Teubner, Stuttgart, Leipzig, 1993, 256–265 | DOI | MR

[8] L. Ehrenpreis, “Solutions of some problems of division 4”, Amer. J. Math., 82 (1960), 522–588 | DOI | MR | Zbl

[9] O. R. Gabrielyan, “Comparison of power and strength of polynomials in $R^2$”, Complex Analysis, Differential Equations and Related Topics, Proc. ISAAC Conference on Analysis, Yerevan, 2002, 41–51 | MR

[10] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 34:3 (1999) | MR | MR

[11] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 39:3 (2004) | MR | MR

[12] H. G. Ghazaryan, V. N. Margaryan, “Behaviour at infinity of polynomials in two variables”, Topics in Analysis and its Applications, NATO Sci. Series, 147, Kluwer Acad. Publ., Dortrecht, Boston, London, 2004, 163–190 | MR | Zbl

[13] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 41:6 (2006), 30–46 | MR

[14] L. Gårding, B. Malgrange, “Operateurs differentiels partiellement hypoelliptiques”, Math. Scand., 9 (1961), 5–21 | MR

[15] L. Hörmander, “On the theory of general partial differential operators”, Acta Math., 94 (1955), 161–248 | DOI | MR | Zbl

[16] L. Hörmander, The analysis of linear partial differential operators, v. 2, Springer Verlag, 1983

[17] G. G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk. Matematika, 398:6 (2004), 701–703 (in Russian) | MR

[18] A. N. Kolmogorov, S. V. Fomin, Elements of theory of functions and functional analysis, Nauka, Moscow, 1972 (in Russian)