Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_1_a6, author = {H. G. Ghazaryan and V. N. Margaryan}, title = {On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations}, journal = {Eurasian mathematical journal}, pages = {54--72}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a6/} }
TY - JOUR AU - H. G. Ghazaryan AU - V. N. Margaryan TI - On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations JO - Eurasian mathematical journal PY - 2010 SP - 54 EP - 72 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a6/ LA - en ID - EMJ_2010_1_1_a6 ER -
H. G. Ghazaryan; V. N. Margaryan. On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 54-72. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a6/
[1] R. A. Adams, Sobolev spaces, Academic press, New York, San Francisco, London, 1975 | MR | Zbl
[2] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral representations of functions and embedding theorems, Nauka, Moscow, 1975 (in Russian) ; English transl. v. 1, John Wiley and sons, New York, 1978 ; v. 2, 1979 | MR | Zbl | Zbl
[3] Ya. S. Bugrov, “Embedding theorems for some function spaces”, Proc. Steklov Inst. Math., 77, 1965, 45–64 (in Russian) | MR | Zbl
[4] V. I. Burenkov, “An analogue of Hörmander's theorem on hypoellipticity for functions converging to 0 at infinity”, Proc. 7th Soviet – Czechoslovak Seminar (Yerevan, 1982), 63–67 (in Russian)
[5] V. I. Burenkov, Sobolev spaces on domains, Teubner–Texte zur Mathematic, 137, B. G. Teubner, Stuttgart, Leipzig, 1998 | DOI | MR | Zbl
[6] V. I. Burenkov, Investigation of spaces of differentiable functions defined on irregular domains, Doctor's degree thesis, Steklov Inst. Math., Moscow, 1982 (in Russian)
[7] V. I. Burenkov, “Conditional hypoellipticity and Fourier multipliers in weighted $L_p$-spaces with an exponential weight”, Proc. of the Summer School “Function spaces, differential operators, nonlinear analysis”, held in Fridrichroda in 1993, Teubner-Texte zur Mathematik, 133, B. G. Teubner, Stuttgart, Leipzig, 1993, 256–265 | DOI | MR
[8] L. Ehrenpreis, “Solutions of some problems of division 4”, Amer. J. Math., 82 (1960), 522–588 | DOI | MR | Zbl
[9] O. R. Gabrielyan, “Comparison of power and strength of polynomials in $R^2$”, Complex Analysis, Differential Equations and Related Topics, Proc. ISAAC Conference on Analysis, Yerevan, 2002, 41–51 | MR
[10] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 34:3 (1999) | MR | MR
[11] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 39:3 (2004) | MR | MR
[12] H. G. Ghazaryan, V. N. Margaryan, “Behaviour at infinity of polynomials in two variables”, Topics in Analysis and its Applications, NATO Sci. Series, 147, Kluwer Acad. Publ., Dortrecht, Boston, London, 2004, 163–190 | MR | Zbl
[13] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 41:6 (2006), 30–46 | MR
[14] L. Gårding, B. Malgrange, “Operateurs differentiels partiellement hypoelliptiques”, Math. Scand., 9 (1961), 5–21 | MR
[15] L. Hörmander, “On the theory of general partial differential operators”, Acta Math., 94 (1955), 161–248 | DOI | MR | Zbl
[16] L. Hörmander, The analysis of linear partial differential operators, v. 2, Springer Verlag, 1983
[17] G. G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk. Matematika, 398:6 (2004), 701–703 (in Russian) | MR
[18] A. N. Kolmogorov, S. V. Fomin, Elements of theory of functions and functional analysis, Nauka, Moscow, 1972 (in Russian)