Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces
Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 32-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the boundedness of a Calderon-Zygmund singular integral operator $T$ in local Morrey-type spaces is reduced to the boundedness of the Hardy operator in weighted $L_p$-spaces on the cone of non-negative non-increasing functions. This allows obtaining sufficient conditions for the boundedness of $T$ in local Morrey-type spaces for all admissible values of the parameters. Moreover, for a certain range of the parameters, for a genuine Calderon-Zygmund singular integral operator these sufficient conditions coincide with the necessary ones.
@article{EMJ_2010_1_1_a5,
     author = {V. I. Burenkov and V. S. Guliyev and A. Serbetci and T. V. Tararykova},
     title = {Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {32--53},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a5/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - V. S. Guliyev
AU  - A. Serbetci
AU  - T. V. Tararykova
TI  - Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 32
EP  - 53
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a5/
LA  - en
ID  - EMJ_2010_1_1_a5
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A V. S. Guliyev
%A A. Serbetci
%A T. V. Tararykova
%T Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces
%J Eurasian mathematical journal
%D 2010
%P 32-53
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a5/
%G en
%F EMJ_2010_1_1_a5
V. I. Burenkov; V. S. Guliyev; A. Serbetci; T. V. Tararykova. Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 32-53. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a5/

[1] V. I. Burenkov, Function spaces. Main integral inequalities related to $L_p$-spaces, Peoples' Friendship University of Russia, Moscow, 1989 (in Russian)

[2] Russian Acad. Sci. Dokl. Math., 67 (2003) | MR | Zbl

[3] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[4] Acad. Sci. Dokl. Math., 74 (2006) | MR | Zbl

[5] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces”, Journal of Computational and Applied Mathematics, 208:1 (2007), 280–301 | DOI | MR | Zbl

[6] Acad. Sci. Dokl. Math., 76 (2007) | MR

[7] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[8] Acad. Sci. Dokl. Math., 78:2 (2008), 651–654 | DOI | MR | Zbl

[9] R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Société Mathématique de France, Paris, 1978 | MR

[10] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, “Weight theory for integral transforms on spaces of homogeneous type”, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, 1998 | MR | Zbl

[11] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb R^n$, Doctor's degree thesis, Mat. Inst. Steklov, Moscow, 1994 (in Russian)

[12] V. S. Guliyev, R. Ch. Mustafaev, “Integral operators of potential type in spaces of homogeneous type”, Doklady Ross. Akad. Nauk. Matematika, 354:6 (1997), 730–732 (in Russian) | MR

[13] V. S. Guliyev, R. Ch. Mustafaev, “Fractional integrals in spaces of functions defined on spaces of homogeneous type”, Anal. Math., 24:3 (1998), 181–200 (in Russian) | DOI | MR

[14] V. S. Guliyev, Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Elm., Baku, 1999 (in Russian)

[15] V. S. Guliyev, “Some properties of the anisotropic Riesz–Bessel potential”, Anal. Math., 26:2 (2000), 99–118 | DOI | MR

[16] T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic Analysis, ICM-90 Satellite Proceedings, ed. S. Igari, Springer Verlag, Tokyo, 1991, 183–189 | MR

[17] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR

[18] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl

[19] Springer Verlag, 1975 | MR | Zbl

[20] J. Peetre, “On convolution operators leaving $\mathcal L^{p,\lambda}$ spaces invariant”, Ann. Mat. Pura ed Appl., 72:4 (1966), 295–304 | MR | Zbl

[21] E. Sawyer, R. Wheeden, “Weighted inequalities for fractional integrals on euclidean and homegeneous spaces”, Amer. Journal of Math., 114:4 (1992), 813–874 | DOI | MR | Zbl

[22] E. M. Stein, Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[23] V. D. Stepanov, “Weighted Hardy inequalities for increasing functions”, Canadian Journal Math., 45 (1993), 104–116 | DOI | MR | Zbl

[24] V. D. Stepanov, “The weighted Hardy's inequalities for nonincreasing functions”, Trans. Amer. Math. Soc., 338 (1993), 173–186 | DOI | MR | Zbl