Interpolation theorem for stochastic processes
Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 8-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the class of stochastic processes $N_{p,q}(F)$ is introduced and an interpolation theorem for a quasilinear transform is proved. This theorem is a generalization of the Marcinkiewicz interpolation theorem.
@article{EMJ_2010_1_1_a3,
     author = {T. Aubakirov and E. Nursultanov},
     title = {Interpolation theorem for stochastic processes},
     journal = {Eurasian mathematical journal},
     pages = {8--16},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a3/}
}
TY  - JOUR
AU  - T. Aubakirov
AU  - E. Nursultanov
TI  - Interpolation theorem for stochastic processes
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 8
EP  - 16
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a3/
LA  - en
ID  - EMJ_2010_1_1_a3
ER  - 
%0 Journal Article
%A T. Aubakirov
%A E. Nursultanov
%T Interpolation theorem for stochastic processes
%J Eurasian mathematical journal
%D 2010
%P 8-16
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a3/
%G en
%F EMJ_2010_1_1_a3
T. Aubakirov; E. Nursultanov. Interpolation theorem for stochastic processes. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 8-16. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a3/

[1] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer Verlag, Berlin, New York, 1976 | DOI | MR | Zbl

[2] D. L. Burkholder, R. F. Gundy, “Extrapolation and interpolation of quasi-linear operators on martingales”, Acta mathematica, 124 (1970), 250–304 | DOI | MR

[3] M. Milman, “On interpolation of martingale $L^p$ spaces”, Indiana university journal, 30:2 (1981), 313–318 | DOI | MR | Zbl

[4] E. D. Nursultanov, “Interpolation properties of some anisotropic spaces and Hardy–Littlewood type inequalities”, East J. App., 3 (1998), 243–275 | MR

[5] E. D. Nursultanov, “Network spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3–4 (1998), 399–419 (in Russian) | DOI | MR | Zbl

[6] F. Weisz, “Interpolation between martingale Hardy and BMO spaces, the real method”, Bull. Sc. math., 116 (1992), 145–158 | MR | Zbl

[7] F. Weisz, “Interpolation between two-parameter martingale Hardy spaces, the real method”, Bull. Sc. math., 115 (1991), 253–264 | MR | Zbl

[8] F. Weisz, “Interpolation between continuous parameter martingale spaces, the real method”, Acta Math. Hungar., 68 (1995), 37–54 | DOI | MR | Zbl