@article{EMJ_2010_1_1_a3,
author = {T. Aubakirov and E. Nursultanov},
title = {Interpolation theorem for stochastic processes},
journal = {Eurasian mathematical journal},
pages = {8--16},
year = {2010},
volume = {1},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a3/}
}
T. Aubakirov; E. Nursultanov. Interpolation theorem for stochastic processes. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 8-16. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a3/
[1] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer Verlag, Berlin, New York, 1976 | DOI | MR | Zbl
[2] D. L. Burkholder, R. F. Gundy, “Extrapolation and interpolation of quasi-linear operators on martingales”, Acta mathematica, 124 (1970), 250–304 | DOI | MR
[3] M. Milman, “On interpolation of martingale $L^p$ spaces”, Indiana university journal, 30:2 (1981), 313–318 | DOI | MR | Zbl
[4] E. D. Nursultanov, “Interpolation properties of some anisotropic spaces and Hardy–Littlewood type inequalities”, East J. App., 3 (1998), 243–275 | MR
[5] E. D. Nursultanov, “Network spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3–4 (1998), 399–419 (in Russian) | DOI | MR | Zbl
[6] F. Weisz, “Interpolation between martingale Hardy and BMO spaces, the real method”, Bull. Sc. math., 116 (1992), 145–158 | MR | Zbl
[7] F. Weisz, “Interpolation between two-parameter martingale Hardy spaces, the real method”, Bull. Sc. math., 115 (1991), 253–264 | MR | Zbl
[8] F. Weisz, “Interpolation between continuous parameter martingale spaces, the real method”, Acta Math. Hungar., 68 (1995), 37–54 | DOI | MR | Zbl