Computing codimensions and generic canonical forms for generalized matrix products
The electronic journal of linear algebra, Tome 22 (2011), pp. 277-309.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A generalized matrix product can be formally written as A s p p As p -
Keywords: matrix product, periodic eigenvalue problem, canonical form, generic Kronecker structure, cyclic quiver, orthogonal reduction
@article{ELA_2011__22__a59,
     author = {Kagstrom, Bo and Karlsson, Lars and Kressner, Daniel},
     title = {Computing codimensions and generic canonical forms for generalized matrix products},
     journal = {The electronic journal of linear algebra},
     pages = {277--309},
     publisher = {mathdoc},
     volume = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2011__22__a59/}
}
TY  - JOUR
AU  - Kagstrom, Bo
AU  - Karlsson, Lars
AU  - Kressner, Daniel
TI  - Computing codimensions and generic canonical forms for generalized matrix products
JO  - The electronic journal of linear algebra
PY  - 2011
SP  - 277
EP  - 309
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2011__22__a59/
LA  - en
ID  - ELA_2011__22__a59
ER  - 
%0 Journal Article
%A Kagstrom, Bo
%A Karlsson, Lars
%A Kressner, Daniel
%T Computing codimensions and generic canonical forms for generalized matrix products
%J The electronic journal of linear algebra
%D 2011
%P 277-309
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2011__22__a59/
%G en
%F ELA_2011__22__a59
Kagstrom, Bo; Karlsson, Lars; Kressner, Daniel. Computing codimensions and generic canonical forms for generalized matrix products. The electronic journal of linear algebra, Tome 22 (2011), pp. 277-309. http://geodesic.mathdoc.fr/item/ELA_2011__22__a59/