Even and odd tournament matrices with minimum rank over finite fields
The electronic journal of linear algebra, Tome 22 (2011), pp. 363-377.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The (0, 1)-matrix A of order n is a tournament matrix provided A + A T+ I = J, where I is the identity matrix, and J = J n is the all 1's matrix of order n. It was shown by de Caen and Michael that the rank of a tournament matrix A of order n over a field of characteristic p satisfies rank p (A) $\geq $(n - 1)/2 with equality if and only if n is odd and AA T= O. This article shows that the rank of a tournament matrix A of even order n over a field of characteristic p satisfies rank p (A) $\geq $n/2 with equality if and only if after simultaneous row and column permutations AA $T= \pm J$ m OO O, for a suitable integer m. The results and constructions for even order tournament matrices are related to and shed light on tournament matrices of odd order with minimum rank.
Classification : 15A03, 05C20, 05C50
Keywords: tournament matrix, rank
@article{ELA_2011__22__a56,
     author = {Doering, Elizabeth and Michael, T.S. and Shader, Bryan L.},
     title = {Even and odd tournament matrices with minimum rank over finite fields},
     journal = {The electronic journal of linear algebra},
     pages = {363--377},
     publisher = {mathdoc},
     volume = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2011__22__a56/}
}
TY  - JOUR
AU  - Doering, Elizabeth
AU  - Michael, T.S.
AU  - Shader, Bryan L.
TI  - Even and odd tournament matrices with minimum rank over finite fields
JO  - The electronic journal of linear algebra
PY  - 2011
SP  - 363
EP  - 377
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2011__22__a56/
LA  - en
ID  - ELA_2011__22__a56
ER  - 
%0 Journal Article
%A Doering, Elizabeth
%A Michael, T.S.
%A Shader, Bryan L.
%T Even and odd tournament matrices with minimum rank over finite fields
%J The electronic journal of linear algebra
%D 2011
%P 363-377
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2011__22__a56/
%G en
%F ELA_2011__22__a56
Doering, Elizabeth; Michael, T.S.; Shader, Bryan L. Even and odd tournament matrices with minimum rank over finite fields. The electronic journal of linear algebra, Tome 22 (2011), pp. 363-377. http://geodesic.mathdoc.fr/item/ELA_2011__22__a56/