Generalized Pascal $k$-eliminated functional matrix with $2n$ variables
The electronic journal of linear algebra, Tome 22 (2011), pp. 419-429.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we introduce the Pascal k-eliminated functional matrix and the Pascal symmetric functional matrix with 2n variables. Some algebraic properties of these matrices are presented and proved. In addition, we demonstrate a direct application of these properties for LU decompositions of some well-known matrices (such as symmetric Pascal matrices).
Classification : 15A06, 34A30
Keywords: Pascal matrix, Pascal k-eliminated functional matrix, Pascal symmetric functional matrix, Lu decompositions, Cholesky factorization
@article{ELA_2011__22__a53,
     author = {Bayat, Morteza},
     title = {Generalized {Pascal} $k$-eliminated functional matrix with $2n$ variables},
     journal = {The electronic journal of linear algebra},
     pages = {419--429},
     publisher = {mathdoc},
     volume = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2011__22__a53/}
}
TY  - JOUR
AU  - Bayat, Morteza
TI  - Generalized Pascal $k$-eliminated functional matrix with $2n$ variables
JO  - The electronic journal of linear algebra
PY  - 2011
SP  - 419
EP  - 429
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2011__22__a53/
LA  - en
ID  - ELA_2011__22__a53
ER  - 
%0 Journal Article
%A Bayat, Morteza
%T Generalized Pascal $k$-eliminated functional matrix with $2n$ variables
%J The electronic journal of linear algebra
%D 2011
%P 419-429
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2011__22__a53/
%G en
%F ELA_2011__22__a53
Bayat, Morteza. Generalized Pascal $k$-eliminated functional matrix with $2n$ variables. The electronic journal of linear algebra, Tome 22 (2011), pp. 419-429. http://geodesic.mathdoc.fr/item/ELA_2011__22__a53/