The minimum-norm least-squares solution of a linear system and symmetric rank-one updates
The electronic journal of linear algebra, Tome 22 (2011), pp. 480-489.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we study the Moore-Penrose inverse of a symmetric rank-one perturbed matrix from which a finite method is proposed for the minimum-norm least-squares solution to the system of linear equations Ax = b. This method is guaranteed to produce the required result.
Classification : 15A06, 15A09, 65F05
Keywords: finite method, linear system, Moore-Penrose inverse, symmetric rank-one update
@article{ELA_2011__22__a48,
     author = {Chen, Xuzhou and Ji, Jun},
     title = {The minimum-norm least-squares solution of a linear system and symmetric rank-one updates},
     journal = {The electronic journal of linear algebra},
     pages = {480--489},
     publisher = {mathdoc},
     volume = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2011__22__a48/}
}
TY  - JOUR
AU  - Chen, Xuzhou
AU  - Ji, Jun
TI  - The minimum-norm least-squares solution of a linear system and symmetric rank-one updates
JO  - The electronic journal of linear algebra
PY  - 2011
SP  - 480
EP  - 489
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2011__22__a48/
LA  - en
ID  - ELA_2011__22__a48
ER  - 
%0 Journal Article
%A Chen, Xuzhou
%A Ji, Jun
%T The minimum-norm least-squares solution of a linear system and symmetric rank-one updates
%J The electronic journal of linear algebra
%D 2011
%P 480-489
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2011__22__a48/
%G en
%F ELA_2011__22__a48
Chen, Xuzhou; Ji, Jun. The minimum-norm least-squares solution of a linear system and symmetric rank-one updates. The electronic journal of linear algebra, Tome 22 (2011), pp. 480-489. http://geodesic.mathdoc.fr/item/ELA_2011__22__a48/