Geometric structure of single/combined equivalence classes of a controllable pair
The electronic journal of linear algebra, Tome 22 (2011), pp. 1112-1128.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a pair of matrices representing a controllable linear system, its equivalence classes by the single or combined action of feedbacks, change of state and input variables, as well as their intersection are studied. In particular, it is proved that they are differentiable manifolds and their dimensions are computed. Some remarks concerning the effect of different kinds of feedbacks are derived.
Classification : 37A20, 93C05, 93C73
Keywords: controllable pairs, linear systems, orbits by feedback, orbits by variables change, system perturbations
@article{ELA_2011__22__a4,
     author = {Compta, Albert and Ferrer, Josep and Pena, Marta},
     title = {Geometric structure of single/combined equivalence classes of a controllable pair},
     journal = {The electronic journal of linear algebra},
     pages = {1112--1128},
     publisher = {mathdoc},
     volume = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2011__22__a4/}
}
TY  - JOUR
AU  - Compta, Albert
AU  - Ferrer, Josep
AU  - Pena, Marta
TI  - Geometric structure of single/combined equivalence classes of a controllable pair
JO  - The electronic journal of linear algebra
PY  - 2011
SP  - 1112
EP  - 1128
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2011__22__a4/
LA  - en
ID  - ELA_2011__22__a4
ER  - 
%0 Journal Article
%A Compta, Albert
%A Ferrer, Josep
%A Pena, Marta
%T Geometric structure of single/combined equivalence classes of a controllable pair
%J The electronic journal of linear algebra
%D 2011
%P 1112-1128
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2011__22__a4/
%G en
%F ELA_2011__22__a4
Compta, Albert; Ferrer, Josep; Pena, Marta. Geometric structure of single/combined equivalence classes of a controllable pair. The electronic journal of linear algebra, Tome 22 (2011), pp. 1112-1128. http://geodesic.mathdoc.fr/item/ELA_2011__22__a4/