Spectra of weighted rooted graphs having prescribed subgraphs at some levels
The electronic journal of linear algebra, Tome 22 (2011), pp. 653-671.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let B be a weighted generalized Bethe tree of k levels (k > 1) in which n j is the number of vertices at the level k - j + 1 ($1 \leq j \leq k$). Let $\Delta \subseteq {1, 2, . . . , k - 1}$ and F = G j : j $\in \Delta $, where G j is a prescribed weighted graph on each set of children of B at the level k - j+1. In this paper, the eigenvalues of a block symmetric tridiagonal matrix of order n
Classification : 05C50, 15A18
Keywords: weighted graph, Laplacian matrix, signless Laplacian matrix, adjacency matrix, generalized Bethe tree
@article{ELA_2011__22__a34,
     author = {Rojo, Oscar and Robbiano, Maria and Cardoso, Domingos M. and Martins, Enide A.},
     title = {Spectra of weighted rooted graphs having prescribed subgraphs at some levels},
     journal = {The electronic journal of linear algebra},
     pages = {653--671},
     publisher = {mathdoc},
     volume = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2011__22__a34/}
}
TY  - JOUR
AU  - Rojo, Oscar
AU  - Robbiano, Maria
AU  - Cardoso, Domingos M.
AU  - Martins, Enide A.
TI  - Spectra of weighted rooted graphs having prescribed subgraphs at some levels
JO  - The electronic journal of linear algebra
PY  - 2011
SP  - 653
EP  - 671
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2011__22__a34/
LA  - en
ID  - ELA_2011__22__a34
ER  - 
%0 Journal Article
%A Rojo, Oscar
%A Robbiano, Maria
%A Cardoso, Domingos M.
%A Martins, Enide A.
%T Spectra of weighted rooted graphs having prescribed subgraphs at some levels
%J The electronic journal of linear algebra
%D 2011
%P 653-671
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2011__22__a34/
%G en
%F ELA_2011__22__a34
Rojo, Oscar; Robbiano, Maria; Cardoso, Domingos M.; Martins, Enide A. Spectra of weighted rooted graphs having prescribed subgraphs at some levels. The electronic journal of linear algebra, Tome 22 (2011), pp. 653-671. http://geodesic.mathdoc.fr/item/ELA_2011__22__a34/