The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors
The electronic journal of linear algebra, Tome 22 (2011), pp. 1129-1137.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, some representations for the Moore-Penrose inverse of a linear combination of generalized and hypergeneralized projectors are found. Also, the invertibility for some linear combinations of commuting generalized and hypergeneralized projectors is considered.
Classification : 15A09
Keywords: idempotent, projector, generalized projector, hypergeneralized projector, Moore- Penrose inverse
@article{ELA_2011__22__a3,
     author = {Tosic, Marina and Cvetkovic-Ilic, Dragana S. and Deng, Chunyuan},
     title = {The {Moore-Penrose} inverse of a linear combination of commuting generalized and hypergeneralized projectors},
     journal = {The electronic journal of linear algebra},
     pages = {1129--1137},
     publisher = {mathdoc},
     volume = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2011__22__a3/}
}
TY  - JOUR
AU  - Tosic, Marina
AU  - Cvetkovic-Ilic, Dragana S.
AU  - Deng, Chunyuan
TI  - The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors
JO  - The electronic journal of linear algebra
PY  - 2011
SP  - 1129
EP  - 1137
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2011__22__a3/
LA  - en
ID  - ELA_2011__22__a3
ER  - 
%0 Journal Article
%A Tosic, Marina
%A Cvetkovic-Ilic, Dragana S.
%A Deng, Chunyuan
%T The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors
%J The electronic journal of linear algebra
%D 2011
%P 1129-1137
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2011__22__a3/
%G en
%F ELA_2011__22__a3
Tosic, Marina; Cvetkovic-Ilic, Dragana S.; Deng, Chunyuan. The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors. The electronic journal of linear algebra, Tome 22 (2011), pp. 1129-1137. http://geodesic.mathdoc.fr/item/ELA_2011__22__a3/