Spectral characterization of $\dagger $-shape trees
The electronic journal of linear algebra, Tome 22 (2011), pp. 822-837.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The -shape tree is the coalescence of the star K 1,4 and the path P n - 4 with respect to two pendent vertices. In this paper, it is showed that the -shape tree is determined by its adjacency spectrum if and only if n = 2k + 9 (k = 0, 1, . . .). Furthermore, all the cospectral mates of the -shape tree are found when n = 2k + 9.
Classification : 05C50
Keywords: -shape tree, adjacency spectrum, spectral characterization, cospectral graphs
@article{ELA_2011__22__a22,
     author = {Liu, Fenjin and Huang, Qiongxiang and Liu, Qinghai},
     title = {Spectral characterization of $\dagger $-shape trees},
     journal = {The electronic journal of linear algebra},
     pages = {822--837},
     publisher = {mathdoc},
     volume = {22},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2011__22__a22/}
}
TY  - JOUR
AU  - Liu, Fenjin
AU  - Huang, Qiongxiang
AU  - Liu, Qinghai
TI  - Spectral characterization of $\dagger $-shape trees
JO  - The electronic journal of linear algebra
PY  - 2011
SP  - 822
EP  - 837
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2011__22__a22/
LA  - en
ID  - ELA_2011__22__a22
ER  - 
%0 Journal Article
%A Liu, Fenjin
%A Huang, Qiongxiang
%A Liu, Qinghai
%T Spectral characterization of $\dagger $-shape trees
%J The electronic journal of linear algebra
%D 2011
%P 822-837
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2011__22__a22/
%G en
%F ELA_2011__22__a22
Liu, Fenjin; Huang, Qiongxiang; Liu, Qinghai. Spectral characterization of $\dagger $-shape trees. The electronic journal of linear algebra, Tome 22 (2011), pp. 822-837. http://geodesic.mathdoc.fr/item/ELA_2011__22__a22/