Completing block Hermitian matrices with maximal and minimal ranks and inertias
The electronic journal of linear algebra, Tome 21 (2010), pp. 124-141.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a Hermitian matrix with its main block diagonal given, this paper shows how to choose the off-diagonal blocks such that the resulting matrix has the maximal and minimal possible ranks and inertias, respectively. Some direct consequences and applications are also given.
Classification : 15A03, 15A23, 15B57
Keywords: Hermitian matrix, partial matrix, rank, inertia, matrix completion, matrix decomposition
@article{ELA_2010__21__a2,
     author = {Tian, Yongge},
     title = {Completing block {Hermitian} matrices with maximal and minimal ranks and inertias},
     journal = {The electronic journal of linear algebra},
     pages = {124--141},
     publisher = {mathdoc},
     volume = {21},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2010__21__a2/}
}
TY  - JOUR
AU  - Tian, Yongge
TI  - Completing block Hermitian matrices with maximal and minimal ranks and inertias
JO  - The electronic journal of linear algebra
PY  - 2010
SP  - 124
EP  - 141
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2010__21__a2/
LA  - en
ID  - ELA_2010__21__a2
ER  - 
%0 Journal Article
%A Tian, Yongge
%T Completing block Hermitian matrices with maximal and minimal ranks and inertias
%J The electronic journal of linear algebra
%D 2010
%P 124-141
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2010__21__a2/
%G en
%F ELA_2010__21__a2
Tian, Yongge. Completing block Hermitian matrices with maximal and minimal ranks and inertias. The electronic journal of linear algebra, Tome 21 (2010), pp. 124-141. http://geodesic.mathdoc.fr/item/ELA_2010__21__a2/