The minimum rank problem over finite fields
The electronic journal of linear algebra, Tome 20 (2010), pp. 691-716.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The structure of all graphs having minimum rank at most k over a finite field with q elements is characterized for any possible k and q. A strong connection between this characterization and polarities of projective geometries is explained. Using this connection, a few results in the minimum rank problem are derived by applying some known results from projective geometry.
Classification : 05C50, 05C75, 15A03, 05B25, 51E20
Keywords: minimum rank, symmetric matrix, finite field, projective geometry, polarity graph, bilinear symmetric form
@article{ELA_2010__20__a5,
     author = {Grout, Jason},
     title = {The minimum rank problem over finite fields},
     journal = {The electronic journal of linear algebra},
     pages = {691--716},
     publisher = {mathdoc},
     volume = {20},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2010__20__a5/}
}
TY  - JOUR
AU  - Grout, Jason
TI  - The minimum rank problem over finite fields
JO  - The electronic journal of linear algebra
PY  - 2010
SP  - 691
EP  - 716
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2010__20__a5/
LA  - en
ID  - ELA_2010__20__a5
ER  - 
%0 Journal Article
%A Grout, Jason
%T The minimum rank problem over finite fields
%J The electronic journal of linear algebra
%D 2010
%P 691-716
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2010__20__a5/
%G en
%F ELA_2010__20__a5
Grout, Jason. The minimum rank problem over finite fields. The electronic journal of linear algebra, Tome 20 (2010), pp. 691-716. http://geodesic.mathdoc.fr/item/ELA_2010__20__a5/