Ranges of Sylvester maps and a minimal rank problem
The electronic journal of linear algebra, Tome 20 (2010), pp. 126-135.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is proved that the range of a Sylvester map defined by two matrices of sizes p $\times p$ and q $\times q, respectively,$ plus matrices whose ranks are bounded above, cover all p $\times q$ matrices. The best possible upper bound on the ranks is found in many cases. An application is made to a minimal rank problem that is motivated by the theory of minimal factorizations of rational matrix functions.
Classification : 15A06, 15A99
Keywords: Sylvester maps, invariant subspaces, rank
@article{ELA_2010__20__a44,
     author = {Ran, Andre C.M. and Rodman, Leiba X.},
     title = {Ranges of {Sylvester} maps and a minimal rank problem},
     journal = {The electronic journal of linear algebra},
     pages = {126--135},
     publisher = {mathdoc},
     volume = {20},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2010__20__a44/}
}
TY  - JOUR
AU  - Ran, Andre C.M.
AU  - Rodman, Leiba X.
TI  - Ranges of Sylvester maps and a minimal rank problem
JO  - The electronic journal of linear algebra
PY  - 2010
SP  - 126
EP  - 135
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2010__20__a44/
LA  - en
ID  - ELA_2010__20__a44
ER  - 
%0 Journal Article
%A Ran, Andre C.M.
%A Rodman, Leiba X.
%T Ranges of Sylvester maps and a minimal rank problem
%J The electronic journal of linear algebra
%D 2010
%P 126-135
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2010__20__a44/
%G en
%F ELA_2010__20__a44
Ran, Andre C.M.; Rodman, Leiba X. Ranges of Sylvester maps and a minimal rank problem. The electronic journal of linear algebra, Tome 20 (2010), pp. 126-135. http://geodesic.mathdoc.fr/item/ELA_2010__20__a44/