Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars
The electronic journal of linear algebra, Tome 20 (2010), pp. 136-157.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A caterpillar is a tree in which the removal of all pendant vertices makes it a path. Let d $\geq 3$ and n $\geq 6$ be given. Let P d - 1 be the path of d - 1 vertices and S p be the star of p + 1 vertices. Let p = [p
Classification : 05C50, 15A48, 05C05
Keywords: Laplacian matrix, algebraic connectivity, caterpillar, bottleneck matrices, Perron branches, characteristic vertices
@article{ELA_2010__20__a43,
     author = {Rojo, Oscar and Medina, Luis and De Abreu, Nair M.M. and Justel, Claudia},
     title = {Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars},
     journal = {The electronic journal of linear algebra},
     pages = {136--157},
     publisher = {mathdoc},
     volume = {20},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2010__20__a43/}
}
TY  - JOUR
AU  - Rojo, Oscar
AU  - Medina, Luis
AU  - De Abreu, Nair M.M.
AU  - Justel, Claudia
TI  - Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars
JO  - The electronic journal of linear algebra
PY  - 2010
SP  - 136
EP  - 157
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2010__20__a43/
LA  - en
ID  - ELA_2010__20__a43
ER  - 
%0 Journal Article
%A Rojo, Oscar
%A Medina, Luis
%A De Abreu, Nair M.M.
%A Justel, Claudia
%T Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars
%J The electronic journal of linear algebra
%D 2010
%P 136-157
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2010__20__a43/
%G en
%F ELA_2010__20__a43
Rojo, Oscar; Medina, Luis; De Abreu, Nair M.M.; Justel, Claudia. Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars. The electronic journal of linear algebra, Tome 20 (2010), pp. 136-157. http://geodesic.mathdoc.fr/item/ELA_2010__20__a43/