The numerical radius of a weighted shift operator with geometric weights
The electronic journal of linear algebra, Tome 18 (2009), pp. 58-63.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let T be a weighted shift operator T on the Hilbert space 2 (N) with geometric weights. Then the numerical range of T is a closed disk about the origin, and its numerical radius is determined in terms of the reciprocal of the minimum positive root of a hypergeometric function. This function is related to two Rogers-Ramanujan identities.
Classification : 47A12, 47B37, 33D15
Keywords: numerical radius, weighted shift operator, Rogers-Ramanujan identities
@article{ELA_2009__18__a53,
     author = {Chien, Mao-Ting and Nakazato, Hiroshi},
     title = {The numerical radius of a weighted shift operator with geometric weights},
     journal = {The electronic journal of linear algebra},
     pages = {58--63},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a53/}
}
TY  - JOUR
AU  - Chien, Mao-Ting
AU  - Nakazato, Hiroshi
TI  - The numerical radius of a weighted shift operator with geometric weights
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 58
EP  - 63
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a53/
LA  - en
ID  - ELA_2009__18__a53
ER  - 
%0 Journal Article
%A Chien, Mao-Ting
%A Nakazato, Hiroshi
%T The numerical radius of a weighted shift operator with geometric weights
%J The electronic journal of linear algebra
%D 2009
%P 58-63
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a53/
%G en
%F ELA_2009__18__a53
Chien, Mao-Ting; Nakazato, Hiroshi. The numerical radius of a weighted shift operator with geometric weights. The electronic journal of linear algebra, Tome 18 (2009), pp. 58-63. http://geodesic.mathdoc.fr/item/ELA_2009__18__a53/