The structure of linear preservers of left matrix majorization on $\Bbb R^p$
The electronic journal of linear algebra, Tome 18 (2009), pp. 88-97.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For vectors X, Y $\in R$ n , Y is said to be left matrix majorized by X (Y $\prec X$) if for some row stochastic matrix R, Y = RX. A linear operator T : R p $\rightarrow R$ n is said to be a linear preserver of $\prec $if Y $\prec X$ on R p implies that T Y $\prec T$ X on R n . The linear operators T : R p $\rightarrow R$ n ( n p$(p - 1))$ which preserve $\prec $have been characterized. In this paper, linear operators T : R p $\rightarrow R$ n which preserve $\prec $are characterized without any condition on n and p.
Classification : 15A04, 15A21, 15A51
Keywords: row stochastic matrix, doubly stochastic matrix, matrix majorization, weak matrix majorization, left (right) multivariate majorization, linear preserver
@article{ELA_2009__18__a50,
     author = {Khalooei, Fatemeh and Salemi, Abbas},
     title = {The structure of linear preservers of left matrix majorization on $\Bbb R^p$},
     journal = {The electronic journal of linear algebra},
     pages = {88--97},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a50/}
}
TY  - JOUR
AU  - Khalooei, Fatemeh
AU  - Salemi, Abbas
TI  - The structure of linear preservers of left matrix majorization on $\Bbb R^p$
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 88
EP  - 97
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a50/
LA  - en
ID  - ELA_2009__18__a50
ER  - 
%0 Journal Article
%A Khalooei, Fatemeh
%A Salemi, Abbas
%T The structure of linear preservers of left matrix majorization on $\Bbb R^p$
%J The electronic journal of linear algebra
%D 2009
%P 88-97
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a50/
%G en
%F ELA_2009__18__a50
Khalooei, Fatemeh; Salemi, Abbas. The structure of linear preservers of left matrix majorization on $\Bbb R^p$. The electronic journal of linear algebra, Tome 18 (2009), pp. 88-97. http://geodesic.mathdoc.fr/item/ELA_2009__18__a50/