Totally positive completions for monotonically labeled block clique graphs
The electronic journal of linear algebra, Tome 18 (2009), pp. 146-161.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is shown that if the connected graph of the specified entries of a combinatorially symmetric, partial totally positive matrix is monotonically labeled block clique, then there is a totally positive completion. Necessarily the completion strategy is very different from and more complicated than the known totally nonnegative one. The completion preserves symmetry and can be used to solve some non-connected or rectangular, nonsymmetric completion problems.
Classification : 15A15, 15A57, 05C50
Keywords: totally positive matrix completion problems, partial matrix, monotonically labeled block clique graph
@article{ELA_2009__18__a45,
     author = {Johnson, Charles R. and Negron, Cris},
     title = {Totally positive completions for monotonically labeled block clique graphs},
     journal = {The electronic journal of linear algebra},
     pages = {146--161},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a45/}
}
TY  - JOUR
AU  - Johnson, Charles R.
AU  - Negron, Cris
TI  - Totally positive completions for monotonically labeled block clique graphs
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 146
EP  - 161
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a45/
LA  - en
ID  - ELA_2009__18__a45
ER  - 
%0 Journal Article
%A Johnson, Charles R.
%A Negron, Cris
%T Totally positive completions for monotonically labeled block clique graphs
%J The electronic journal of linear algebra
%D 2009
%P 146-161
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a45/
%G en
%F ELA_2009__18__a45
Johnson, Charles R.; Negron, Cris. Totally positive completions for monotonically labeled block clique graphs. The electronic journal of linear algebra, Tome 18 (2009), pp. 146-161. http://geodesic.mathdoc.fr/item/ELA_2009__18__a45/