On the maximum positive semi-definite nullity and the cycle matroid of graphs
The electronic journal of linear algebra, Tome 18 (2009), pp. 192-201.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let G = (V, E) be a graph with $V = {1, 2, . . . , n}$, in which we allow parallel edges but no loops, and let S+ ( G) be the set of all positive semi-definite n $\times n$ matrices A = [a i,j ] with a i,j = 0 if i = j and i and j are non-adjacent, a i,j = 0 if i = j and i and j are connected by exactly one edge, and a i,j $\in R$ if i = j or i and j are connected by parallel edges. The maximum positive semi-definite nullity of G, denoted by M + ( G), is the maximum nullity attained by any matrix A $\in S$ + ( G). A k-separation of G is a pair of subgraphs (G
Classification : 05C50, 15A18
Keywords: positive semi-definite matrices, nullity, graphs, separation, matroids
@article{ELA_2009__18__a42,
     author = {Van Der Holst, Hein},
     title = {On the maximum positive semi-definite nullity and the cycle matroid of graphs},
     journal = {The electronic journal of linear algebra},
     pages = {192--201},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a42/}
}
TY  - JOUR
AU  - Van Der Holst, Hein
TI  - On the maximum positive semi-definite nullity and the cycle matroid of graphs
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 192
EP  - 201
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a42/
LA  - en
ID  - ELA_2009__18__a42
ER  - 
%0 Journal Article
%A Van Der Holst, Hein
%T On the maximum positive semi-definite nullity and the cycle matroid of graphs
%J The electronic journal of linear algebra
%D 2009
%P 192-201
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a42/
%G en
%F ELA_2009__18__a42
Van Der Holst, Hein. On the maximum positive semi-definite nullity and the cycle matroid of graphs. The electronic journal of linear algebra, Tome 18 (2009), pp. 192-201. http://geodesic.mathdoc.fr/item/ELA_2009__18__a42/