Matrices totally positive relative to a tree
The electronic journal of linear algebra, Tome 18 (2009), pp. 211-221.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is known that for a totally positive (TP) matrix, the eigenvalues are positive and distinct and the eigenvector associated with the smallest eigenvalue is totally nonzero and has an alternating sign pattern. Here, a certain weakening of the TP hypothesis is shown to yield a similar conclusion.
Classification : 15A18, 94C15
Keywords: totally positive matrices, Sylvester's identity, graph theory, spectral theory
@article{ELA_2009__18__a40,
     author = {Johnson, Charles R. and Costas-Santos, Roberto S. and Tadchiev, Boris},
     title = {Matrices totally positive relative to a tree},
     journal = {The electronic journal of linear algebra},
     pages = {211--221},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a40/}
}
TY  - JOUR
AU  - Johnson, Charles R.
AU  - Costas-Santos, Roberto S.
AU  - Tadchiev, Boris
TI  - Matrices totally positive relative to a tree
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 211
EP  - 221
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a40/
LA  - en
ID  - ELA_2009__18__a40
ER  - 
%0 Journal Article
%A Johnson, Charles R.
%A Costas-Santos, Roberto S.
%A Tadchiev, Boris
%T Matrices totally positive relative to a tree
%J The electronic journal of linear algebra
%D 2009
%P 211-221
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a40/
%G en
%F ELA_2009__18__a40
Johnson, Charles R.; Costas-Santos, Roberto S.; Tadchiev, Boris. Matrices totally positive relative to a tree. The electronic journal of linear algebra, Tome 18 (2009), pp. 211-221. http://geodesic.mathdoc.fr/item/ELA_2009__18__a40/