The symmetric minimal rank solution of the matrix equation $AX=B$ and the optimal approximation
The electronic journal of linear algebra, Tome 18 (2009), pp. 264-271.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: By applying the matrix rank method, the set of symmetric matrix solutions with prescribed rank to the matrix equation AX = B is found. An expression is provided for the optimal approximation to the set of the minimal rank solutions.
Classification : 65F15, 65F20
Keywords: symmetric matrix, matrix equation, maximal rank, minimal rank, fixed rank solutions, optimal approximate solution
@article{ELA_2009__18__a35,
     author = {Xiao, Qing-Feng and Hu, Xi-Yan and Zhang, Lei},
     title = {The symmetric minimal rank solution of the matrix equation $AX=B$ and the optimal approximation},
     journal = {The electronic journal of linear algebra},
     pages = {264--271},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a35/}
}
TY  - JOUR
AU  - Xiao, Qing-Feng
AU  - Hu, Xi-Yan
AU  - Zhang, Lei
TI  - The symmetric minimal rank solution of the matrix equation $AX=B$ and the optimal approximation
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 264
EP  - 271
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a35/
LA  - en
ID  - ELA_2009__18__a35
ER  - 
%0 Journal Article
%A Xiao, Qing-Feng
%A Hu, Xi-Yan
%A Zhang, Lei
%T The symmetric minimal rank solution of the matrix equation $AX=B$ and the optimal approximation
%J The electronic journal of linear algebra
%D 2009
%P 264-271
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a35/
%G en
%F ELA_2009__18__a35
Xiao, Qing-Feng; Hu, Xi-Yan; Zhang, Lei. The symmetric minimal rank solution of the matrix equation $AX=B$ and the optimal approximation. The electronic journal of linear algebra, Tome 18 (2009), pp. 264-271. http://geodesic.mathdoc.fr/item/ELA_2009__18__a35/