The Jordan forms of $AB$ and $BA$
The electronic journal of linear algebra, Tome 18 (2009), pp. 281-288.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The relationship between the Jordan forms of the matrix products AB and BA for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.
Classification : 15A21, 15A18
Keywords: Jordan form, Weyr characteristic, eigenvalues
@article{ELA_2009__18__a33,
     author = {Lippert, Ross A. and Strang, Gilbert},
     title = {The {Jordan} forms of $AB$ and $BA$},
     journal = {The electronic journal of linear algebra},
     pages = {281--288},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a33/}
}
TY  - JOUR
AU  - Lippert, Ross A.
AU  - Strang, Gilbert
TI  - The Jordan forms of $AB$ and $BA$
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 281
EP  - 288
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a33/
LA  - en
ID  - ELA_2009__18__a33
ER  - 
%0 Journal Article
%A Lippert, Ross A.
%A Strang, Gilbert
%T The Jordan forms of $AB$ and $BA$
%J The electronic journal of linear algebra
%D 2009
%P 281-288
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a33/
%G en
%F ELA_2009__18__a33
Lippert, Ross A.; Strang, Gilbert. The Jordan forms of $AB$ and $BA$. The electronic journal of linear algebra, Tome 18 (2009), pp. 281-288. http://geodesic.mathdoc.fr/item/ELA_2009__18__a33/