A new solvable condition for a pair of generalized Sylvester equations
The electronic journal of linear algebra, Tome 18 (2009), pp. 289-301.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A necessary and sufficient condition is given for the quaternion matrix equations Ai X + Y B i = Ci ( i = 1, 2) to have a pair of common solutions X and Y . As a consequence, the results partially answer a question posed by Y.H. Liu (Y.H. Liu, Ranks of solutions of the linear matrix equation AX + Y B = C, Comput. Math. Appl., 52 (2006), pp. 861-872).
Classification : 15A03, 15A09, 15A24, 15A33
Keywords: quaternion matrix equation, generalized Sylvester equation, generalized inverse, minimal rank, maximal rank
@article{ELA_2009__18__a32,
     author = {Wang, Qing-Wen and Zhang, Hua-Sheng and Song, Guang-Jing},
     title = {A new solvable condition for a pair of generalized {Sylvester} equations},
     journal = {The electronic journal of linear algebra},
     pages = {289--301},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a32/}
}
TY  - JOUR
AU  - Wang, Qing-Wen
AU  - Zhang, Hua-Sheng
AU  - Song, Guang-Jing
TI  - A new solvable condition for a pair of generalized Sylvester equations
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 289
EP  - 301
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a32/
LA  - en
ID  - ELA_2009__18__a32
ER  - 
%0 Journal Article
%A Wang, Qing-Wen
%A Zhang, Hua-Sheng
%A Song, Guang-Jing
%T A new solvable condition for a pair of generalized Sylvester equations
%J The electronic journal of linear algebra
%D 2009
%P 289-301
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a32/
%G en
%F ELA_2009__18__a32
Wang, Qing-Wen; Zhang, Hua-Sheng; Song, Guang-Jing. A new solvable condition for a pair of generalized Sylvester equations. The electronic journal of linear algebra, Tome 18 (2009), pp. 289-301. http://geodesic.mathdoc.fr/item/ELA_2009__18__a32/