Explicit solutions of regular linear discrete-time descriptor systems with constant coefficients
The electronic journal of linear algebra, Tome 18 (2009), pp. 317-338.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Explicit solution formulas are presented for systems of the form Ex k+1 = Ax k + f k with k $\in K$, w here K $\subset Z$ is a discrete interval and the pencil $\lambda E$ - A is regular. Different results are obtained when one starts with an initial condition at the point k = 0 and calculates into the future (i.e., Ex k+1 = Ax k + f k with k $\in N$) and when one wants to get a complete solution (i.e., Ex k+1 = Ax k + f k with k $\in Z$).
Classification : 39A05, 15A06
Keywords: descriptor system, strangeness index, linear discrete descriptor system, explicit solution, backward Leslie model
@article{ELA_2009__18__a30,
     author = {Bruell, Tobias},
     title = {Explicit solutions of regular linear discrete-time descriptor systems with constant coefficients},
     journal = {The electronic journal of linear algebra},
     pages = {317--338},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a30/}
}
TY  - JOUR
AU  - Bruell, Tobias
TI  - Explicit solutions of regular linear discrete-time descriptor systems with constant coefficients
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 317
EP  - 338
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a30/
LA  - en
ID  - ELA_2009__18__a30
ER  - 
%0 Journal Article
%A Bruell, Tobias
%T Explicit solutions of regular linear discrete-time descriptor systems with constant coefficients
%J The electronic journal of linear algebra
%D 2009
%P 317-338
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a30/
%G en
%F ELA_2009__18__a30
Bruell, Tobias. Explicit solutions of regular linear discrete-time descriptor systems with constant coefficients. The electronic journal of linear algebra, Tome 18 (2009), pp. 317-338. http://geodesic.mathdoc.fr/item/ELA_2009__18__a30/