Universally optimal matrices and field independence of the minimum rank of a graph
The electronic journal of linear algebra, Tome 18 (2009), pp. 403-419.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The minimum rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose (i, j)th entry (for i = j) isnonzero whenever ${i, j}$ isan edge in G and is zero otherwise. A universally optimal matrix is defined to be an integer matrix A such that every off-diagonal entry of A is0, 1, or - 1, and for all fields F , the rank of A isthe minimum rank over F of its graph. Universally optimal matrices are used to establish field independence of minimum rank for numerousgraphs. Examplesare also provided verifying lack of field independence for other graphs.
Classification : 05C50, 15A03
Keywords: minimum rank, universally optimal matrix, field independent, symmetric matrix, rank, graph, matrix
@article{ELA_2009__18__a25,
     author = {Dealba, Luz M. and Grout, Jason and Hogben, Leslie and Mikkelson, Rana and Rasmussen, Kaela},
     title = {Universally optimal matrices and field independence of the minimum rank of a graph},
     journal = {The electronic journal of linear algebra},
     pages = {403--419},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a25/}
}
TY  - JOUR
AU  - Dealba, Luz M.
AU  - Grout, Jason
AU  - Hogben, Leslie
AU  - Mikkelson, Rana
AU  - Rasmussen, Kaela
TI  - Universally optimal matrices and field independence of the minimum rank of a graph
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 403
EP  - 419
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a25/
LA  - en
ID  - ELA_2009__18__a25
ER  - 
%0 Journal Article
%A Dealba, Luz M.
%A Grout, Jason
%A Hogben, Leslie
%A Mikkelson, Rana
%A Rasmussen, Kaela
%T Universally optimal matrices and field independence of the minimum rank of a graph
%J The electronic journal of linear algebra
%D 2009
%P 403-419
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a25/
%G en
%F ELA_2009__18__a25
Dealba, Luz M.; Grout, Jason; Hogben, Leslie; Mikkelson, Rana; Rasmussen, Kaela. Universally optimal matrices and field independence of the minimum rank of a graph. The electronic journal of linear algebra, Tome 18 (2009), pp. 403-419. http://geodesic.mathdoc.fr/item/ELA_2009__18__a25/