Group inverses for matrices over a Bézout domain
The electronic journal of linear algebra, Tome 18 (2009), pp. 600-612.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose R is a Bezout domain. In this paper, some necessary and sufficient conditions for the existence of the group inverse for square matrix over R are given, the conditions for the existence of the group inverse of products of matrices are studied, and the equivalent conditions for reverse order law of group inverse of product of matrices are obtained. Also the existence and the representation of the group inverse for a class $2 \times 2$ block matrices over R are studied, and some well known relative results are generalized.
Classification : 15A09
Keywords: Bezout domain, group inverse, right R-module, block matrix
@article{ELA_2009__18__a13,
     author = {Cao, Chongguang and Li, Juyan},
     title = {Group inverses for matrices over a {B\'ezout} domain},
     journal = {The electronic journal of linear algebra},
     pages = {600--612},
     publisher = {mathdoc},
     volume = {18},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2009__18__a13/}
}
TY  - JOUR
AU  - Cao, Chongguang
AU  - Li, Juyan
TI  - Group inverses for matrices over a Bézout domain
JO  - The electronic journal of linear algebra
PY  - 2009
SP  - 600
EP  - 612
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2009__18__a13/
LA  - en
ID  - ELA_2009__18__a13
ER  - 
%0 Journal Article
%A Cao, Chongguang
%A Li, Juyan
%T Group inverses for matrices over a Bézout domain
%J The electronic journal of linear algebra
%D 2009
%P 600-612
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2009__18__a13/
%G en
%F ELA_2009__18__a13
Cao, Chongguang; Li, Juyan. Group inverses for matrices over a Bézout domain. The electronic journal of linear algebra, Tome 18 (2009), pp. 600-612. http://geodesic.mathdoc.fr/item/ELA_2009__18__a13/