Group inverses of matrices with path graphs
The electronic journal of linear algebra, Tome 17 (2008), pp. 219-233.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A simple formula for the group inverse of a $2 \times 2$ block matrix with a bipartite digraph is given in terms of the block matrices. This formula is used to give a graph-theoretic description of the group inverse of an irreducible tridiagonal matrix of odd order with zero diagonal (which is singular). Relations between the zero/nonzero structures of the group inverse and the Moore-Penrose inverse of such matrices are given. An extension of the graph-theoretic description of the group inverse to singular matrices with tree graphs is conjectured.
Classification : 15A09, 05C50
Keywords: group inverse, tridiagonal matrix, tree graph, Moore-Penrose inverse, bipartite digraph
@article{ELA_2008__17__a28,
     author = {Catral, Minerva and Olesky, Dale D. and van den Driessche, Pauline},
     title = {Group inverses of matrices with path graphs},
     journal = {The electronic journal of linear algebra},
     pages = {219--233},
     publisher = {mathdoc},
     volume = {17},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2008__17__a28/}
}
TY  - JOUR
AU  - Catral, Minerva
AU  - Olesky, Dale D.
AU  - van den Driessche, Pauline
TI  - Group inverses of matrices with path graphs
JO  - The electronic journal of linear algebra
PY  - 2008
SP  - 219
EP  - 233
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2008__17__a28/
LA  - en
ID  - ELA_2008__17__a28
ER  - 
%0 Journal Article
%A Catral, Minerva
%A Olesky, Dale D.
%A van den Driessche, Pauline
%T Group inverses of matrices with path graphs
%J The electronic journal of linear algebra
%D 2008
%P 219-233
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2008__17__a28/
%G en
%F ELA_2008__17__a28
Catral, Minerva; Olesky, Dale D.; van den Driessche, Pauline. Group inverses of matrices with path graphs. The electronic journal of linear algebra, Tome 17 (2008), pp. 219-233. http://geodesic.mathdoc.fr/item/ELA_2008__17__a28/