Combinatorial properties of Fourier-Motzkin elimination
The electronic journal of linear algebra, Tome 16 (2007), pp. 334-346.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Fourier-Motzkin elimination is a classical method for solving linear inequalities in which one variable is eliminated in each iteration. This method is considered here as a matrix operation and properties of this operation are established. In particular, the focus is on situations where this matrix operation preserves combinatorial matrices (defined here as (0, 1, -1)-matrices).
Classification : 05C50, 15A39, 90C27
Keywords: linear inequalities, Fourier-Motzkin elimination, network matrices
@article{ELA_2007__16__a9,
     author = {Dahl, Geir},
     title = {Combinatorial properties of {Fourier-Motzkin} elimination},
     journal = {The electronic journal of linear algebra},
     pages = {334--346},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a9/}
}
TY  - JOUR
AU  - Dahl, Geir
TI  - Combinatorial properties of Fourier-Motzkin elimination
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 334
EP  - 346
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a9/
LA  - en
ID  - ELA_2007__16__a9
ER  - 
%0 Journal Article
%A Dahl, Geir
%T Combinatorial properties of Fourier-Motzkin elimination
%J The electronic journal of linear algebra
%D 2007
%P 334-346
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a9/
%G en
%F ELA_2007__16__a9
Dahl, Geir. Combinatorial properties of Fourier-Motzkin elimination. The electronic journal of linear algebra, Tome 16 (2007), pp. 334-346. http://geodesic.mathdoc.fr/item/ELA_2007__16__a9/