Principal eigenvectors of irregular graphs
The electronic journal of linear algebra, Tome 16 (2007), pp. 366-379.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let G be a connected graph. This paper studies the extreme entries of the principal eigenvector x of G, the unique positive unit eigenvector corresponding to the greatest eigenvalue *1 of the adjacency matrix of G. If G has maximum degree $\Delta $, the greatest entry xmax of x is at most 1/q1 + *$21/\Delta $. This improves a result of Papendieck and Recht. The least entry xmin of x as well as the principal ratio xmax/xmin are studied. It is conjectured that for connected graphs of order n >= 3, the principal ratio is always attained by one of the lollipop graphs obtained by attaching a path graph to a vertex of a complete graph.
Classification : 05C50, 15A18
Keywords: spectral radius, irregular graph, eigenvectors
@article{ELA_2007__16__a7,
     author = {Cioab\u{a}, Sebastian M. and Gregory, David A.},
     title = {Principal eigenvectors of irregular graphs},
     journal = {The electronic journal of linear algebra},
     pages = {366--379},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a7/}
}
TY  - JOUR
AU  - Cioabă, Sebastian M.
AU  - Gregory, David A.
TI  - Principal eigenvectors of irregular graphs
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 366
EP  - 379
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a7/
LA  - en
ID  - ELA_2007__16__a7
ER  - 
%0 Journal Article
%A Cioabă, Sebastian M.
%A Gregory, David A.
%T Principal eigenvectors of irregular graphs
%J The electronic journal of linear algebra
%D 2007
%P 366-379
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a7/
%G en
%F ELA_2007__16__a7
Cioabă, Sebastian M.; Gregory, David A. Principal eigenvectors of irregular graphs. The electronic journal of linear algebra, Tome 16 (2007), pp. 366-379. http://geodesic.mathdoc.fr/item/ELA_2007__16__a7/