The weak Hawkins-Simon condition
The electronic journal of linear algebra, Tome 16 (2007), pp. 44-59.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A real square matrix satisfies the weak Hawkins-Simon condition if its leading principal minors are positive (the condition was first studied by the French mathematician Maurice Potron). Three characterizations are given. Simple sufficient conditions ensure that the condition holds after a suitable reordering of columns. A full characterization of this set of matrices should take into account the group of transforms which leave it invariant. A simple algorithm able, in some cases, to implement a suitable permutation of columns is also studied. The nonsingular Stiemke matrices satisfy the WHS condition after reorderings of both rows and columns.
Classification : 15A15, 15A48
Keywords: hawkins-Simon condition, linear complementarity problem, LU factorization, potron, stiemke matrix
@article{ELA_2007__16__a34,
     author = {Bidard, Christian},
     title = {The weak {Hawkins-Simon} condition},
     journal = {The electronic journal of linear algebra},
     pages = {44--59},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a34/}
}
TY  - JOUR
AU  - Bidard, Christian
TI  - The weak Hawkins-Simon condition
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 44
EP  - 59
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a34/
LA  - en
ID  - ELA_2007__16__a34
ER  - 
%0 Journal Article
%A Bidard, Christian
%T The weak Hawkins-Simon condition
%J The electronic journal of linear algebra
%D 2007
%P 44-59
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a34/
%G en
%F ELA_2007__16__a34
Bidard, Christian. The weak Hawkins-Simon condition. The electronic journal of linear algebra, Tome 16 (2007), pp. 44-59. http://geodesic.mathdoc.fr/item/ELA_2007__16__a34/