On perfect conditioning of Vandermonde matrices on the unit circle
The electronic journal of linear algebra, Tome 16 (2007), pp. 157-161.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $K, M \in \Bbb N$ with $K M$, and define a square $K\times K$ Vandermonde matrix $A = A (\tau,\vec n)$ with nodes on the unit circle: $A_{p,q} = \exp (- j2\pi pn_q\tau/K)$; $p,q = 0,1,\dots,K-1$, where $n_q\in \{0,1,\dots,M-1\}$ and $n_0 $. Such matrices arise in some types of interpolation problems. In this paper, necessary and sufficient conditions are presented on the vector $\vec n$ so that a value of $\tau\in \Bbb R$ can be found to achieve perfect conditioning of $A$. A simple test to check the condition is derived and the corresponding value of $\tau$ is found.
Classification : 15A12, 65F35
Keywords: vandermonde matrix, condition number, perfect conditioning
@article{ELA_2007__16__a25,
     author = {Berman, Lihu and Feuer, Arie},
     title = {On perfect conditioning of {Vandermonde} matrices on the unit circle},
     journal = {The electronic journal of linear algebra},
     pages = {157--161},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a25/}
}
TY  - JOUR
AU  - Berman, Lihu
AU  - Feuer, Arie
TI  - On perfect conditioning of Vandermonde matrices on the unit circle
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 157
EP  - 161
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a25/
LA  - en
ID  - ELA_2007__16__a25
ER  - 
%0 Journal Article
%A Berman, Lihu
%A Feuer, Arie
%T On perfect conditioning of Vandermonde matrices on the unit circle
%J The electronic journal of linear algebra
%D 2007
%P 157-161
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a25/
%G en
%F ELA_2007__16__a25
Berman, Lihu; Feuer, Arie. On perfect conditioning of Vandermonde matrices on the unit circle. The electronic journal of linear algebra, Tome 16 (2007), pp. 157-161. http://geodesic.mathdoc.fr/item/ELA_2007__16__a25/