Minimum rank of a tree over an arbitrary field
The electronic journal of linear algebra, Tome 16 (2007), pp. 183-186.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a field F and graph G of order n, the minimum rank of G over F is defined to be the smallest possible rank over all symmetric matrices A 2 F n*n whose (i, j)th entry (for i 6= j) is nonzero whenever ${i, j}$ is an edge in G and is zero otherwise. It is shown that the minimum rank of a tree is independent of the field.
Classification : 05C50, 15A18
Keywords: minimum rank, tree, graph, field, path, symmetric matrix
@article{ELA_2007__16__a22,
     author = {Chenette, Nathan L. and Droms, Sean V. and Hogben, Leslie and Mikkelson, Rana and Pryporova, Olga},
     title = {Minimum rank of a tree over an arbitrary field},
     journal = {The electronic journal of linear algebra},
     pages = {183--186},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a22/}
}
TY  - JOUR
AU  - Chenette, Nathan L.
AU  - Droms, Sean V.
AU  - Hogben, Leslie
AU  - Mikkelson, Rana
AU  - Pryporova, Olga
TI  - Minimum rank of a tree over an arbitrary field
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 183
EP  - 186
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a22/
LA  - en
ID  - ELA_2007__16__a22
ER  - 
%0 Journal Article
%A Chenette, Nathan L.
%A Droms, Sean V.
%A Hogben, Leslie
%A Mikkelson, Rana
%A Pryporova, Olga
%T Minimum rank of a tree over an arbitrary field
%J The electronic journal of linear algebra
%D 2007
%P 183-186
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a22/
%G en
%F ELA_2007__16__a22
Chenette, Nathan L.; Droms, Sean V.; Hogben, Leslie; Mikkelson, Rana; Pryporova, Olga. Minimum rank of a tree over an arbitrary field. The electronic journal of linear algebra, Tome 16 (2007), pp. 183-186. http://geodesic.mathdoc.fr/item/ELA_2007__16__a22/