Block distance matrices
The electronic journal of linear algebra, Tome 16 (2007), pp. 435-443.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, block distance matrices are introduced. Suppose F is a square block matrix in which each block is a symmetric matrix of some given order. If F is positive semidefinite, the block distance matrix D is defined as a matrix whose (i, j)-block is given by Dij = Fii+Fjj -2Fij. When each block in F is 1 * 1 (i.e., a real number), D is a usual Euclidean distance matrix. Many interesting properties of Euclidean distance matrices to block distance matrices are extended in this paper. Finally, distance matrices of trees with matrix weights are investigated.
Classification : 51K05, 15A57
Keywords: distance matrices, Laplacian matrices, trees
@article{ELA_2007__16__a2,
     author = {Balaji, R. and Bapat, R.B.},
     title = {Block distance matrices},
     journal = {The electronic journal of linear algebra},
     pages = {435--443},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a2/}
}
TY  - JOUR
AU  - Balaji, R.
AU  - Bapat, R.B.
TI  - Block distance matrices
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 435
EP  - 443
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a2/
LA  - en
ID  - ELA_2007__16__a2
ER  - 
%0 Journal Article
%A Balaji, R.
%A Bapat, R.B.
%T Block distance matrices
%J The electronic journal of linear algebra
%D 2007
%P 435-443
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a2/
%G en
%F ELA_2007__16__a2
Balaji, R.; Bapat, R.B. Block distance matrices. The electronic journal of linear algebra, Tome 16 (2007), pp. 435-443. http://geodesic.mathdoc.fr/item/ELA_2007__16__a2/