The Moore-Penrose inverse of a free matrix
The electronic journal of linear algebra, Tome 16 (2007), pp. 208-215.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A matrix is free, or generic, if its nonzero entries are algebraically independent. Necessary and sufficient combinatorial conditions are presented for a complex free matrix to have a free Moore-Penrose inverse. These conditions extend previously known results for square, nonsingular free matrices. The result used to prove this characterization relates the combinatorial structure of a free matrix to that of its Moore-Penrose inverse. Also, it is proved that the bipartite graph or, equivalently, the zero pattern of a free matrix uniquely determines that of its Moore-Penrose inverse, and this mapping is described explicitly. Finally, it is proved that a free matrix contains at most as many nonzero entries as does its Moore-Penrose inverse.
Classification : 05C50, 15A09
Keywords: free matrix, Moore-Penrose inverse, bipartite graph, directed graph
@article{ELA_2007__16__a19,
     author = {Britz, Thomas},
     title = {The {Moore-Penrose} inverse of a free matrix},
     journal = {The electronic journal of linear algebra},
     pages = {208--215},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a19/}
}
TY  - JOUR
AU  - Britz, Thomas
TI  - The Moore-Penrose inverse of a free matrix
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 208
EP  - 215
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a19/
LA  - en
ID  - ELA_2007__16__a19
ER  - 
%0 Journal Article
%A Britz, Thomas
%T The Moore-Penrose inverse of a free matrix
%J The electronic journal of linear algebra
%D 2007
%P 208-215
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a19/
%G en
%F ELA_2007__16__a19
Britz, Thomas. The Moore-Penrose inverse of a free matrix. The electronic journal of linear algebra, Tome 16 (2007), pp. 208-215. http://geodesic.mathdoc.fr/item/ELA_2007__16__a19/