Spectrum of infinite block matrices and $\pi$-triangular operators
The electronic journal of linear algebra, Tome 16 (2007), pp. 216-231.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The paper deals with infinite block matrices having compact off diagonal parts. Bounds for the spectrum are established and estimates for the norm of the resolvent are proposed. Applications to matrix integral operators are also discussed. The main tool is the ss-triangular operators defined in the paper.
Classification : 47A10, 47A55, 15A09, 15A18
Keywords: infinite block matrices, spectrum localization, integral operators
@article{ELA_2007__16__a18,
     author = {Gil', Michael},
     title = {Spectrum of infinite block matrices and $\pi$-triangular operators},
     journal = {The electronic journal of linear algebra},
     pages = {216--231},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a18/}
}
TY  - JOUR
AU  - Gil', Michael
TI  - Spectrum of infinite block matrices and $\pi$-triangular operators
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 216
EP  - 231
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a18/
LA  - en
ID  - ELA_2007__16__a18
ER  - 
%0 Journal Article
%A Gil', Michael
%T Spectrum of infinite block matrices and $\pi$-triangular operators
%J The electronic journal of linear algebra
%D 2007
%P 216-231
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a18/
%G en
%F ELA_2007__16__a18
Gil', Michael. Spectrum of infinite block matrices and $\pi$-triangular operators. The electronic journal of linear algebra, Tome 16 (2007), pp. 216-231. http://geodesic.mathdoc.fr/item/ELA_2007__16__a18/