A relation between the multiplicity of the second eigenvalue of a graph Laplacian, Courant's nodal line theorem and the substantial dimension of tight polyhedral surfaces
The electronic journal of linear algebra, Tome 16 (2007), pp. 315-324.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Classification : 15A18, 05C10, 47A75, 15A90
Keywords: graph Laplacian, tight embedding, nodal domains, eigenfunctions, polyhedral manifolds
@article{ELA_2007__16__a11,
     author = {Tlusty, Tsvi},
     title = {A relation between the multiplicity of the second eigenvalue of a graph {Laplacian,} {Courant's} nodal line theorem and the substantial dimension of tight polyhedral surfaces},
     journal = {The electronic journal of linear algebra},
     pages = {315--324},
     publisher = {mathdoc},
     volume = {16},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ELA_2007__16__a11/}
}
TY  - JOUR
AU  - Tlusty, Tsvi
TI  - A relation between the multiplicity of the second eigenvalue of a graph Laplacian, Courant's nodal line theorem and the substantial dimension of tight polyhedral surfaces
JO  - The electronic journal of linear algebra
PY  - 2007
SP  - 315
EP  - 324
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ELA_2007__16__a11/
LA  - en
ID  - ELA_2007__16__a11
ER  - 
%0 Journal Article
%A Tlusty, Tsvi
%T A relation between the multiplicity of the second eigenvalue of a graph Laplacian, Courant's nodal line theorem and the substantial dimension of tight polyhedral surfaces
%J The electronic journal of linear algebra
%D 2007
%P 315-324
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ELA_2007__16__a11/
%G en
%F ELA_2007__16__a11
Tlusty, Tsvi. A relation between the multiplicity of the second eigenvalue of a graph Laplacian, Courant's nodal line theorem and the substantial dimension of tight polyhedral surfaces. The electronic journal of linear algebra, Tome 16 (2007), pp. 315-324. http://geodesic.mathdoc.fr/item/ELA_2007__16__a11/